Interactive Real Analysis
Next  Previous 
Glossary

Map
Real Analysis
1. Sets and Relations
2. Infinity and Induction
3. Sequences of Numbers
4. Series of Numbers
5. Topology
6. Limits, Continuity, and Differentiation
7. The Integral
8. Sequences of Functions
8.1. Pointwise Convergence
8.2. Uniform Convergence
8.3. Series and Power Series
8.4. Taylor Series
8.5. Approximation Theory
9. Historical Tidbits
Java Tools
8.1. Pointwise Convergence
Example 8.1.7 (b): Pointwise Convergent Function Sequence
Show that
f
_{n}
(x) = x
^{n}
,
x
[ 0, 1 ]
converges pointwise and identify the limit function.
Back
Let
Then:
if
x = 1
we have
f
_{n}
(1) = 1
for all
n
if
x < 1
then
f
_{n}
(x) = x
^{n}
is the
power sequence
and thus converges to zero
Hence
f
_{n}
(x)
f(x)
for each fixed
x
.
Next  Previous 
Glossary

Map