3.4. Lim Sup and Lim Inf
Definition 3.4.1: Lim Sup and Lim Inf
Let
be a sequence
of real numbers. Define
.
.

Aj = inf{ aj , aj + 1 , aj + 2 , ...}and let c = lim (Aj). Then c is called the limit inferior of the sequence

Let be a sequence of
real numbers. Define
Bj = sup{ aj , aj + 1 , aj + 2 , ...}and let c = lim (Bj). Then c is called the limit superior of the sequence

In short, we have:
- lim inf(aj) = lim(Aj), where Aj = inf{aj , aj + 1 , aj + 2 , ...}
- lim sup(aj) = lim(Bj), where Bj = sup{ aj , aj + 1 , aj + 2 , ...}