FFT Assignment and computeFFT Function

Goal: For any given function f(t) find coefficients c, ai, and bi, such that:


f(t) = c/2 + a1 cos(2 Pi f t) + b1 sin(2 Pi f t) +



+ a2 cos(4 Pi f t) + b2 sin(4 Pi f t) +


+ a3 cos(6 Pi f t) + b3 sin(6 Pi f t) +


+ ...

where f is 1/T is the frequency (and T is the period, or time, for one period).

Algorithm: Start with a relatively simple function, say f(t) = 1 – 2 cos(t) + 3 sin(t) – 4 cos(2t) + 5 sin(2t) and with a period of 2Pi. Then we want to find coefficients such that:

1 – 2cos(t) + 3sin(t) – 4cos(2t) + 5sin(2t)  = c/2 + a1cos(t) + b1sin(t) +



+ a2cos(2t) + b2sin(2t) +


+ a3cos(3t) + b3sin(3t) +


+ ...

Define an array x of, say 512 doubles, evenly divided into the period from 0 to 2 Pi. In other words,

x[0] = 0, x[1] = 2Pi/512, x[2] = 4Pi/512, x[3] = 6 Pi/512, …

Next, define two arrays of size 512, ar and ai. Evaluate the function f at the points x[i] and assign the value to ar[i]. Also, set all ai[i] = 0. In other words:

(**)
ar[0] = f(x[0]);
ar[1] = f(x[1])
ar[2] = f(x[2]) …


ai[0] = 0

ai[1] = 0

ai[2] = 0 …

Now apply the FFT algorithm, using the above arrays (see below for definition of computeFFT):


computeFFT(1, ar, ai, 512)

The original values of the arrays will be destroyed and filled with other values. Print out the first, say, 10 of these values. The numbers that you see must somehow relate to the coefficients ai and bi you want to find. You just need to know which number ar[i] and ai[i] corresponds to what c, ai, or bi. 

To find out, let’s look again at the equation (*) above. Because of our smart choice of particular function f(t) we can see “in our head” that the coefficients should be as follows:


c = 1, a1 = -2, b1 = 3, a2 = -4, b2 = 5, all others are 0

Knowing that, and seeing the output of the computeFFT method in front of me, I can decide which numbers from the output array correspond to what c, ai, and bi.

Now that I have determined the correspondence between ar[i], ai[i], and c, ai, bi I change the function so that our new function now represents the binary pattern for the letter ‘b’. In other words, I define a function similar to this:

double myFunction(double x)

{
if (x < 2 Pi / 8)



return 0;

// the first bit


else if (x < 4 Pi / 8)



return 1;

// the second bit


else if (x < 6 Pi /8)



return 1;

// the third bit


else if (x < 8 Pi / 8)



return 0;

// the fourth bit


… etc.

}

Using that function, I reset the ar[i] and the ai[i] as in (**) and call computeFFT again. I list the first, say, 10 numbers of the output, and since I have figured out the correspondence I can now tell c, ai, and bi.

Static Method computeFFT


public static void computeFFT(int sign, int n, double ar[], double ai[]) 


{
double scale = 2.0 / (double)n;



int i, j;



for (i = j = 0; i < n; ++i) 



{
if (j >= i) 




{
double tempr = ar[j]*scale;





double tempi = ai[j]*scale;





ar[j] = ar[i]*scale;





ai[j] = ai[i]*scale;





ar[i] = tempr;





ai[i] = tempi;




}




int m = n/2;




while ((m >= 1) && (j >= m)) 




{
j -= m;





m /= 2;




}




j += m;



}



int mmax,istep;



for (mmax = 1, istep = 2*mmax; mmax < n; mmax = istep, istep = 2*mmax) 



{
double delta = sign*Math.PI/(double)mmax;




for (int m = 0; m < mmax; ++m) 




{
double w = m*delta;





double wr = Math.cos(w);





double wi = Math.sin(w);





for (i = m; i < n; i += istep) 





{
j = i + mmax;






double tr = wr*ar[j] - wi*ai[j];






double ti = wr*ai[j] + wi*ar[j];






ar[j] = ar[i] - tr;






ai[j] = ai[i] - ti;






ar[i] += tr;






ai[i] += ti;





}




}




mmax = istep;



}


}

