
Java by Definition Chapter 9: Networking Page 1 of 78

Bert G. Wachsmuth DRAFT April 2009

Chapter 9: �etworking

In this chapter we will introduce Java's networking features that will allow us to communicate with

other computers connected to the Internet. Java adheres to the Internet standard protocol called

TCP/IP that specifies how computers talk to each other over the Internet. Therefore, you can easily

create Java programs to interface with existing services available on the Internet, even if those

services are provided by programs written in a language other than Java. In fact, you could even

write an entire web browser programs similar to Netscape or Internet Explorer in Java and connect

to all services offered on the World Wide Web.1 On the other hand, you could create a web server

system in Java as well, using the many build-in network classes to facilitate the creation of that

program.

This build-in support for Internet connectivity is perhaps the most exiting part of Java. To be sure,

there are a lot of details to take care of before successfully creating a program that connects to other

programs via the Internet. But Java provides an organized and flexible set of classes in the java.net

package that will take care of many details automatically. You are free to concentrate on the task at

hand without worrying about the technical details that are handled automatically by the appropriate

Java classes. Still, a detailed understanding of how the Internet works is essential for the creation of

"net-savvy" programs.

In section 10.1 we will introduce some background information about the Internet and the way it

functions as a whole. Section 10.2 will show how to create client programs to connect to existing

servers and give several examples. Section 10.3 will describe how to create complete client/server

solutions where a server can handle multiple simultaneous clients. Section 10.4, which is optional,

will give an extended example of creating a complete and useful chat client/server package. Section

10.5 will conclude the chapter with a brief discussion of some of the security issues you are faced

with when creating client/server packages.

This chapter will bring us close to the forefront of current technology. Java does provide additional

"hot" features that we will be unable to cover, but the ability to create programs utilizing the

Internet will give us the necessary tools to create modern and exciting software that is in line with

current demands.

Quick View

Here is a quick overview of the topics covered in this chapter.

1
 Such a browser already exists: it is the "Hot Java" web browser and is written by Sun Microsystems.

Java by Definition Chapter 9: Networking Page 2 of 78

Bert G. Wachsmuth DRAFT April 2009

(*) These sections are optional but recommended

(**) These sections are optional

9.1. The Internet

With the Internet's rapid growth during the mid to late 90's the ability of programs to utilize the

Internet became increasingly important. In fact, the latest versions of most major application

packages such as Microsoft Office now contain build-in "Internet support". In some cases that

support consists of accessing online information from within a program. In other cases programs can

automatically downloading updates or patches, or even create collaborative work environments

where people in different locations can work together on a particular project via the Internet. Using

Java we can create programs with similar features.

One of the uses of this technology that will be most interesting to us is that it will allow us to bypass

the security restrictions imposed on Java applets: applets can not write data to disk, but they are

allowed to send data over the network to other computers. An applet we create can, for example,

send data to another stand-alone program that is also created by us and that program can write data

to disk (because as a stand-alone program it does not fall under the applet security restrictions).

Hence, we can enable Java applets to "write" data to disk, taking a detour over the Internet. Another

use of this technology is to create client/server application where one "server" program can provide

and synchronize resources to many "client" programs.

Before exploring Java's networking capabilities we need to understand what the Internet is and how

it works. It is particularly important to understand from the outset that the Internet is much more

than the "World Wide Web" even though today the web is by far the most utilized component of the

Internet.

Definition 10.1.1: The Internet

The Internet is a (huge) collection of wires and computers that collectively transfer digital

information wrapped in individual data packets. In effect, it ties a large collection of computer

10.1. The Internet
What's in a Name: IP Names and Numbers; Sockets, Ports, and Protocols;

Client/Server Programs; Using Telnet to Connect to Servers

10.2. Creating Client Programs
Simple Client Programs; A WebViewer Client

10.3. Creating Server Programs
A Server for Multiple Simultaneous Clients; (*) Directory Client/Server System to

bypass Applet Restrictions; (*) Multi-Client Synchronized Server for Online Ordering

(**) 10.4. The ChatterBox Client/Server Example

The ChatterBox Protocol; The ChatterBox Server Classes; The ChatterBox Client

Class; The ChatterBox Client as an Applet

10.5. Security Issues

Java by Definition Chapter 9: Networking Page 3 of 78

Bert G. Wachsmuth DRAFT April 2009

networks together through a mutually agreed upon standard called TCP/IP (Transmission

Control Protocol/ Internet Protocol). The computers attached to the Internet fall into four general

categories: routers, gateways, servers, and clients.

• Routers are large computers that are directly connected to other routers via high-speed data

connections or satellite links. Routers pass data packets along to other routers to bring them

closer to their delivery address. Routers form the backbone of the Internet and are "aware" of

the topology of parts of the net.

• Gateways are special computers that mediate traffic between local area networks (local

collections of servers and clients) and Internet routers.

• Servers are medium-sized computers such as Unix workstations connected to one (or more)

router or gateway. Servers provide services to client computers via mutually agreed upon

methods of communication called protocols.

• Clients are smaller computers such as individual PC's that are (usually) connected to a

router or gateway. Clients send data packets through gateways and routers to servers,

requesting certain services via specific protocols.

Figure 10.1.1: Interconnected Routers form the backbone of the Internet and span the world

Frequently client computers are connected to other networks in addition to the Internet. Many

university campuses and businesses, for example, have their own network that allows users to access

common disk space and share printers. The same wires that serve to connect these computers to

their own private network also connect the computers to the Internet. That works because data

traveling through a network can be encoded in multiple ways. Data that is encoded according to the

TCP/IP protocol is "Internet data" and is allowed outside the private network, data that is encoded in

other ways remains inside the private network. Such private networks have so-called "gateway

computers" that make sure that only data that is specifically for the Internet is forwarded to an

Internet router, while other data packets are restricted to the private network. Other computers are

connected to the Internet via dialup connections to servers or gateways that in turn forwarding data

packets to the nearest Internet router. Since the Internet can utilize existing networks and connect

them with each other it is sometimes referred to as the "network of networks".

Java by Definition Chapter 9: Networking Page 4 of 78

Bert G. Wachsmuth DRAFT April 2009

Figure 10.1.2: PC's connected to Internet via Gateway Computer or Modem

The Internet actually derived from another network called ARPANet, created by the Defense

Department with taxpayer's money. That network was created in the late 60's to allow military

command-and-control facilities to continue to communicate even if some of the nodes of the network

were destroyed (by acts of nuclear war, as the plans went). The main feature of this network was

that routers could independently redirect data traffic to other nodes if there was a problem with a

few nodes between two points of communications. As the thread of war decreased in 70's and 80's,

ARPANet was opened up to allow universities to participate in the data traffic. In the 80's

businesses joined the network, but it was mainly used by technically and scientifically minded

participants who had to be rather skilled to use the net. In the 90's the World Wide Web was created

as part of the Internet, and its ease of use and visual impact sparked a huge increase in Internet

participants. Today the Internet is mainly run by private companies that continuously add new

routing capacities to allow for the huge increases in world-wide data traffic the Internet has

experienced in the last years.

What's in a �ame: IP �ames and �umbers

The first fundamental problem of the Internet is how to uniquely identify all connected systems. Just

as every person who wants to participate in the worldwide telephone system needs a unique phone

number, all computers connected to the Internet need a unique classification tag. Every computer

that is part of the Internet gets a unique identification number and name. That applies also to

computers that only connect temporarily to the Internet via a modem connection.

Definition 10.1.2: IP �umber and �ame

Every computer attached to the Internet is assigned a unique address called IP number. An IP

number consists of 4 groups of integers between 0 and 255, separated by dots.
2
 Each number also

has a unique name associated with it, consisting of multiple strings separated by dots. The last

two parts of the name, called domain name, identify a computer as part of the same local network

and are associated with the first two groups of numbers. The last part of the name provides some

2
 Thus the Internet can support a maximum of 255

4
 = 4,228,250,625 computers. But the first two integers often

identify a domain and the domain owner is free to administer their last two integers as they please. Therefore per

domain 255
2
 = 65,025 IP numbers are unavailable even if only 10 of those numbers are used.

Java by Definition Chapter 9: Networking Page 5 of 78

Bert G. Wachsmuth DRAFT April 2009

information about the nature of the machine. Every data packet sent over the Internet contains

the IP number of the sender as well as the IP number of the intended recipient in addition to any

data transmitted.

If a computer can not obtain a valid IP number it resorts to the standard default value of

127.0.0.1 with the associated name of localhost. This name can be used by a machine to

connect to itself even when it is not connected to the Internet.

For example, all computers connected to Seton Hall University's campus network are identified by

numbers starting with 149.150 and associated names ending in .shu.edu. Thus, Seton Hall has the

domain name shu.edu and individual computers have names such as www.shu.edu, pirate.shu.edu,

and dhcp-143.shu.edu. The IP numbers associated to these names would look like 149.150.2.1,

149.150.2.6, and 149.150.87.143. A few names and numbers are permanent, i.e. they always refer

to the same physical computer. The majority of the names and numbers are associated dynamically

and refer to different computers at different times.3

Knowing the name of a computer usually reveals something about its origin and purpose, as

illustrated in table 10.1.3. For example, names ending in .edu are usually associated with computers

at US educational institutions, those ending in .de are reserved for computers physically located in

Germany, etc.

IP Name Ending Usual Meaning
.edu educational institution in the US
.com commercial site or network
.net site associated with the functioning of the Internet
.org non-profit organization
.mil military institution in the US
.de, .ca, .fr, .it sites in Germany (.de), Canada (.ca), France (.fr), and Italy (.it)

Table 10.1.3: Meanings associated with Internet names

Although the IP numbers are required to transmit data packets over the Internet, the IP names are

much easier for users to remember. Therefore, there are special computers available on the Internet

that will look up the number associated with a name. These directory assistance computers are

called Domain Name Service (DNS) servers and each computer on the Internet must know the IP

number of at least one DNS system to resolve Internet names to numbers. This is somewhat

analogous to the telephone system: it is much easier for people to remember names rather than

phone numbers. As long as you know the phone number of at least one directory assistance service

you can usually find out the number of anyone whose name you know.

Definition 10.1.3: Domain �ame Service, or D�S

Special computers called Domain 7ame Service (D7S) servers act as "directory assistance"

utilities to find the associated IP number for computers referred to by name. That number is

required before a computer can send any packets over the net.

3
 Seton Hall, for example, could support 65,025 computers but in reality connects at most 2-4% of that figure. If that

ratio were representative for other domains, a more realistic limit on the number of possible Internet computers is

closer to 3% of 255
4
or approximately 130 million machines worldwide.

Java by Definition Chapter 9: Networking Page 6 of 78

Bert G. Wachsmuth DRAFT April 2009

Internet names and numbers are maintained, at least at this time, by an organization called

I7TER7IC (www.internic.net). The directory information that the D7S servers maintain is

constantly and automatically updated.
4

At this point we can piece together a simplified but reasonably accurate scheme of how the Internet

works.

Example 10.1.4:

Try to describe what happens when a user establishes a dialup connection to "the

Internet", starts his or her favorite web browser, and enters a URL to view a particular

web page.

Step 1: A user turns on a PC: The operating system of that PC starts and loads - among many other

things - a program that can handle the TCP/IP (Transmission Control Protocol/ Internet Protocol)

protocol.5 At this time the IP number of the PC is 127.0.0.1 and the associated IP name is localhost

(see figure 10.1.4).

Figure 10.1.4: Individual PC waiting to dialup to the Internet via an ISP

Step 2: The users starts a dialup connection to an Internet Service Provider (ISP) to connect to the

Internet: The dialup software calls a particular phone number and waits until some computer

answers. When a computer answers, the host computer and the local PC exchange authentication

information (such as username and password). If successful, the host machine determines a free IP

number within its allocated range and sends that to the client PC. The client PC is then known on

the Internet via this IP number and the associated IP name, and traffic to and from the Internet is

routed through the dialup host machine to the PC. The host computer also sends the client PC a

particular IP number that is to be used as the client's DNS server (see figure 10.1.5).

4
 It usually takes a day or more for a new Internet name to trickle through all DNS systems around the world. A new

Internet name is universally available only after all DNS systems are updated.
5
 On Windows-based PCs, this program is, essentially and simplified, called "winsock".

Java by Definition Chapter 9: Networking Page 7 of 78

Bert G. Wachsmuth DRAFT April 2009

Figure 10.1.5: Individual PC after successful connection to the Internet via an ISP

Step 3: A user starts a web browser and enters a particular URL to view, such as

http://www.cat.shu.edu/. The web browser sends a request to its DNS server (defined during the

initial phases of dialing up), asking for the IP number corresponding to the name

"www.cat.shu.edu". The DNS server searches its database, inquires at other DNS servers if

necessary, and returns the appropriate IP number to the client PC. The client PC then sends a

request through its host and attached gateways/routers to load a particular web page. The data

packet contains the IP number of the client PC (established during dialup), the IP number of the web

server (determined by the DNS server) and some information that spells "please give me web page

X"6. The data packets are passed around various gateways and routers until it reaches the

destination IP number where it is received by a web server. That web server locates the requested

web page on its disk, wraps it into one or more Internet data packets, adds in particular its own IP

number as sender and the IP number of the original requestor as recipient, and sends the packet on

its way. The packet is again transmitted via gateways and routers7 along to the original requestor.

There it is decoded and the web page is displayed for the user to look at (see figure 10.1.6).

Figure 10.1.6: PC requesting a web page from web server

�

The only part of this picture that we did not explain in detail is how the web server system

(www.cat.shu.edu in this example) can understand the request "please give me web page X", and

how in turn the PC can decode the answer received. After all, as we saw in chapter 9, if data is

6
 There really is no need to say "please" to a web server …

7
 The specific path the return packets take may very well be different from the original path.

Java by Definition Chapter 9: Networking Page 8 of 78

Bert G. Wachsmuth DRAFT April 2009

isolated from structured types inside a program we need to know something about the data before we

can make sense of it.8

In addition, we need to know how exactly data can flow into and out of a system connected to the

Internet.

Sockets, Ports, and Protocols

There are two final pieces to the puzzle to finish our basic introduction to the way the Internet

works: ports and sockets, which are the physical locations where data is transmitted, and protocols,

which are the specifications of how the data is structured:

Definition 10.1.5: Ports and Sockets

A port is generally a place where information goes into or out of a computer. Many personal

computers, for example, have serial ports, i.e. physical locations to attach input/output devices.

Computers attached to a communications network such as the Internet also have ports that are

non-physical logical channels identified by a unique port number through which information can

flow in and out of the system. Computers on the Internet have over 10,000 logical ports each,

where ports with numbers less than 1024 are often reserved for special services.

A socket is a network communications endpoint, analogous to a socket to which electrical wires

(the network data connection) can be attached. Sockets are associated with a port, and each port

can have one passive socket awaiting incoming connections as well as multiple active sockets

corresponding to an open connection on that port. An active socket on one machine is connected

to a remote active socket on another machine via an open data connection. Closing the

connection destroys the active sockets at each endpoint. A passive socket is not connected, but

rather awaits an incoming connection, which will spawn a new active socket.

In other words, when a computer is connected to the Internet, information flows in and out of logical

ports identified by number. Each port has a socket associated with it that is initially passive. When a

connection is requested to a particular port, the passive socket spawns an active socket on this port

that will then serve as one endpoint of the data connection. The remote computer initiating the

connection also has an active socket on a particular port, serving as the other endpoint of the data

link. Data can then be transmitted through these ports via the active sockets.

IP number:

IP name:

198.196.219.7

ip8.phone.att.net

DNS server:
 198.196.2.1

port 80
active
sockets

passive socket

port 1114

port 110

active
sockets

passive
sockets

PC connected

to Internet

8
 Compare example 9.2.14 where we saved two int values to disk but retrieved the data as a double, which was for

all intent and purposes a valid but random double.

Java by Definition Chapter 9: Networking Page 9 of 78

Bert G. Wachsmuth DRAFT April 2009

Figure 10.1.7: Schematic computer with ports and sockets

Now that we know how exactly data gets in and out of a computer (more or less at least), we need to

specify what type of data exactly is transmitted, how it is interpreted, and how requests are made to

initiate any data transfer. That is specified via protocols, i.e. formal descriptions of rules and

message formats that machines must follow to exchange data.

Definition 10.1.6: Internet Protocols

A protocol is a mutually agreed upon method of communication between two or more parties that

clarifies exactly what type of data exchange will take place and how to initiate it. Many well-

known protocols exist for the Internet that govern complex services between two or more

computers. Some of the important ones are listed in table 10.1.8 together with their default port

numbers, including:

• http: Hypertext Transfer Protocol - specifies how to request and transmit web pages

• ftp: File Transfer Protocol - specifies how to initiate and conduct file transfers

• smtp: Simple Mail Transfer Protocol - specifies how to send electronic mail

• pop: Post Office Protocol - specifies how to retrieve and manipulate electronic mail

Protocols are specified in so-called Requests for Comments (RFC) and are available in written

form on the Internet. Protocols are implemented via programming code to perform the data

exchange according to the rules and formats of the particular protocol.

Protocol Meaning Standard Port
echo echoes everything back 7
discard discards everything 9
daytime sends date and time 13
ftp file transfer protocol 21
telnet terminal protocol 23
smtp simple mail transfer protocol 25
finger displays user information 79
http hypertext transfer protocol 80
pop3 post office protocol (version 3) 110
nntp network news, or Usenet 119
imap manages email on server 143
talk talks to another user 517
kerberos security services 750

Table 10.1.8: Standard Internet protocol names and associated ports

These protocols are very strict and are discussed and refined for quite some time. Once implemented

they are strictly adhered to until a refined version of the protocol is discussed, established, and

implemented.9 Tables 10.1.9 to 10.1.12 show some sample exchanges in various protocols.

Protocol Default Port Sample Exchange

http 80 ⇒ GET / HTTP/1.0

⇒ ↵
⇐ HTTP/1.0 200 OK

9
 The http protocol, for example, was recently upgraded from version 1.0 to version 1.1, which means that all web

servers and web browsers had to be rewritten to adhere the new http 1.1 protocol.

Java by Definition Chapter 9: Networking Page 10 of 78

Bert G. Wachsmuth DRAFT April 2009

⇐ Date: Wed, 18 Mar 1999 20:18:59 GMT

⇐ Server: Apache/1.0.0
⇐ Content-type: text/html

⇐ Content-length: 1579
⇐ Last-modified: Mon, 22 Jan 1999 22:23:34 GMT
⇐

⇐ HTML document …

Table 10.1.9: Sample client/server exchange using http protocol to request a web page

Protocol Default Port Sample Exchange

smtp 25 ⇐ 220 kitten Simple Mail Transfer Service Ready
⇒ HELO mycomputer.mydomain

⇐ 250 kitten.shu.edu
⇒ MAIL FROM:<Smith@shu.edu>

⇐ 250 OK
⇒ RCPT TO:<Jones@shu.edu>

⇐ 250 OK
⇒ DATA

⇐ 354 Start mail input; end with <CRLF>.<CRLF>
⇒ Blah blah blah...

⇒ .
⇐ 250 OK

Table 10.1.10: Sample client/server exchange using smtp protocol to send an email message

Protocol Default Port Sample Exchange

pop 110 ⇐ +OK POP3 server ready
⇐ <1896.697170952@dbc.mtview.ca.us>

⇒ APOP mrose c4c9334bac560ecc979e58001b3e22fb
⇐ +OK mrose's maildrop has 2 messages (320 octets)

⇒ LIST
⇐ +OK 2 messages (320 octets)

⇐ 1 120
⇐ 2 200

⇐ .
⇒ RETR 1

⇐ +OK 120 octets
⇐ <the POP3 server sends message 1>

⇐ .
⇒ QUIT

⇐ +OK dewey POP3 server signing off (maildrop empty)

Table 10.1.11: Sample client/server exchange using pop protocol to request an email message

Protocol Default Port Sample Exchange

echo 7 ⇒ hello

⇐ hello

⇒ Anybody there?

⇐ Anybody there?

⇒ This protocol is pretty easy.

⇐ This protocol is pretty easy.

Table 10.1.12: Sample client/server exchange using the echo protocol

Client/Server Programs

Java by Definition Chapter 9: Networking Page 11 of 78

Bert G. Wachsmuth DRAFT April 2009

In tables 10.1.9 to 10.1.12 data is exchanged according to the specified protocol, assuming a

connection could be established on the default port. Two systems are participating: the system

initiating the connection is called client, the system answering the request is called server. Data

prefaced by the right-arrow symbol ⇒⇒⇒⇒ is sent from the client to the server, data prefaced by the left-

arrow symbol ⇐⇐⇐⇐ is sent from the server to the client. Such a client/server model, in fact, is the

underlying software model that governs the Internet.

Definition 10.1.7: Server Program

A server program is a stand-alone computer program that often has access to a large set of data

or other resources and runs in the background on computers permanently connected to the

Internet
10

. It has a minimal user interface and operates, for the most part, without user

intervention. Servers most often "listen" on specified ports for a network connection, and once a

connection is established they communicate with the requestor using a mutually agreed upon

protocol. One server program can usually handle requests by multiple clients simultaneously.
11

All major protocols that are in use on the Internet are implemented in particular server programs.

• A web server program, usually called httpd, listens by default on port 80 for incoming

connections and delivers web pages when requested. It implements the http protocol.

• A pop server program, usually called popd, listens on port 110 and is ready to deliver email to

a user when asked. It implements the pop protocol

• The program most frequently used to deliver email between computers is called sendmail. It

listens on port 25 and implements the smtp protocol

• Other frequently used server programs are ftpd, listening on port 21, and telnetd, listening

on port 23.

• A server that may not appear very useful but can be handy for testing purposes is the echod

server, implementing the echo protocol. That server listens on port 7 by default.

• Another server program that can be quite useful is called msqld and listens on port 1114 by

default. It understands requests in Structured Query Language (SQL) but the actual protocol

is more involved than SQL.

Figure 10.1.13: Typical server programs running on a typical Unix system

10
 Server programs can be started on any computer, even on a localhost not connected to the Internet. However, in

order to connect to a server the client program needs to know the IP name of the server. Therefore that name should

not change and the server system should be connected at all times.
11
 Of course multiple requests are not handled truly simultaneously unless the system that runs the server has more

than one processor.

Java by Definition Chapter 9: Networking Page 12 of 78

Bert G. Wachsmuth DRAFT April 2009

The counter-part to server programs are client programs. Those are the programs that the user

interacts with and that in turn interact with an appropriate server program who speaks the same

protocol as the client.

Definition 10.1.8: Client Program

A client program is a program with an extensive user interface or other visual capabilities, but

with little access to resources. A client program communicates with a server program via an

Internet connection on a specific port to request information or cause action. It presents the data

delivered by the server in an appropriate way or displays appropriate messages regarding the

actions caused on the server. In many cases multiple client programs can be serviced by one

server program. The client must use the same protocol as the server in order to communicate

effectively.

There are many examples of client programs and most modern programs these days include at least

a client component:

• Netscape Communicator and Internet Explorer are both web client programs. They both

understand the http protocol and interface usually with a web server program such as

httpd.

• Chat client programs are commonly used to communicate with several people at the same

time, much like a telephone party line. Client programs interface with appropriate chat

servers who negotiate the communication between the participating chat clients.

• Email programs such as Netscape Messenger, Microsoft Outlook, or Eudora are client

programs that understand the pop protocol or, more and more frequently, another email

standard protocol called imap. They interface with appropriate pop or imap servers to retrieve

email messages for the user. Most also interface with an smtp client program to deliver

outgoing email.

• Anti-Virus protection programs are not client programs but they can often download updated

anti-virus definitions from the Internet. They do that by invoking a client component that

interfaces with an appropriate server program to obtain the new information. The protocol

used is usually proprietary.12

Now we have spent a lot of time explaining some of the inner workings of the Internet. It is high

time for some examples. Before we actually write our own Java client and server programs, we will

take a hands-on look at some existing servers using a standard universal client program called

telnet.

Using Telnet to Connect to Servers

Telnet is a terminal emulation and communications program that allows you to use a remote

computer for text-based applications as if you were sitting in front of it. It is most frequently used to

interface with a telnetd server program using a specific protocol. However, telnet is very versatile

and can be used to interface with many, in fact most, other text-based server programs. Since it is

12
 It should be secure enough to prevent a virus program from infecting the downloaded information.

Java by Definition Chapter 9: Networking Page 13 of 78

Bert G. Wachsmuth DRAFT April 2009

automatically installed on Windows 95/98/NT computers as well as all Unix systems, it is an ideal

starting point to explore various servers.13

Example 10.1.9:

The daytime protocol (see table 10.1.8) is a particularly simple protocol. It specifies that

the server should send the date and time of the server machine to any client connecting

to it. Use telnet to connect to the standard daytime port 13 of a machine such as

www.cat.shu.edu and describe what happens.

Telnet, by default, tries to connect to a telnetd server on port 23, but it can also connect to any other

port and attempt to communicate with a server listening on that port. To start a telnet connection to

port 13 on the machine www.cat.shu.edu using a Unix system you type:

telnet www.cat.shu.edu 13

On Windows systems, you should open the C:\Windows folder and double-click on the program

telnet.exe. Select Connect | Remote System … and enter the desired host name and port in the

dialog box that pops up:

Figure 10.1.14: Establishing a Windows telnet connection to www.cat.shu.edu on port 13

One Macintosh systems, the procedure is similar. Of course the system you are using should be

connected to the Internet prior to initiating a connection. If everything works, you will see a response

from the daytime server such as the one shown in figure 10.1.15.

Figure 10.1.15: Typical response from a daytime server

The daytime server will deliver the current date and time of its system, which may be different from

the current time of the client system.14 After sending the information, the server immediately closes

the connection.

13
 Telnet programs are readily available for free for Macintosh systems (see appendix).

14
 If there is no daytime server listening on port 13 of the server system you will get a message saying "request

denied" or something similar. You can try any other machine name you know such as www.sun.com, www.ibm.com,

www.mit.edu, etc. until you find a daytime server that will answer.

Java by Definition Chapter 9: Networking Page 14 of 78

Bert G. Wachsmuth DRAFT April 2009

�

Telnet can also be used to connect to servers that speak a more complex protocol such as http. It will

not make any attempt to interpret the response sent by a server in any way, it simply displays it "as

is".

Example 10.1.10:

Review the sample session using the http protocol and an httpd server shown in table

10.1.9, then use Telnet (not Netscape or Internet Explorer) to try to obtain a web page

from the web server running on the machine called www.shu.edu or from another system

such as www.yahoo.com. Explain in detail what is happening when you are successful.

First of all, we are trying to connect to another computer on the Internet, so we must be connected to

the Internet either via a dialup connection or another network connection. Once your connection to

the Internet is established, you can start the telnet program to connect to the desired host as in

example 10.1.10. Note, however, that based on our previous discussion we now need to connect to

port 80 on the specific host, because httpd web servers are listening on port 80. To start the telnet

connection on Unix systems, you type:

telnet www.shu.edu 80

to connect to the machine called www.shu.edu on port 80. On Windows systems, you open the

C:\Windows folder and double-click on the program telnet.exe. Select Connect | Remote System

... and enter the desired host name and port in the dialog box that pops up:

Figure 10.1.16: Establishing a telnet connection to www.shu.edu on port 80

One Macintosh systems, the procedure is similar If you are indeed properly connected to the

Internet, you will soon see a prompt informing you that you are connected. However, nothing else

will happen. The web server program is now waiting for you - or rather the client program - to issue

an appropriate request for a web page as outlined in the http protocol.15 In table 10.1.9 we saw a

sample session with an httpd server so we know that the appropriate commands to request a web

page are:

GET / HTTP/1.0

↵

15
 The web server does not know that a non-web browser has connected as a client.

Java by Definition Chapter 9: Networking Page 15 of 78

Bert G. Wachsmuth DRAFT April 2009

In other words, type "GET / HTTP/1.0" as indicated, hit ENTER - nothing happens - and then hit

ENTER again.16 Now you have issued the simplest command from the http protocol that the server

understands and you will see a "web page" similar to the one shown in figure 10.1.17:

Figure 10.1.17: Resulting data transmitted when requesting a web page via telnet

Of course this data does not look the way it would when requesting the same page with a web

browser. A web browser, in addition to being able to speak http with a web server, also understands

the Hypertext Markup Language HTML, which consists of formatting commands enclosed in angular

brackets. A web client applies appropriate formatting mechanisms instead of simply displaying the

HTML tags as our telnet program does. However, we have achieved our goal: we did get the desired

web page from the web server even if it did not look very pretty.

Here is what happens in detail:

• You establish a dialup connection if necessary: your Internet service provider assigns an

IP name and number to your computer and tells your computer with DNS server to use.

• You establish a telnet connection to www.shu.edu on port 80: First, a request is

transmitted to the DNS server to find the IP number of the host named www.shu.edu.

Once the DNS server supplies that number, a data packet including this number, your

own IP number, and some additional information that says "establish connection with

port 80" is sent to your dialup server. That server passes the packet along to routers,

who in turn deliver it, eventually, to the machine with the IP number associated with

www.shu.edu. That machine looks at the packet and opens a connection to port 80. A

passive socket on that port spawns an active socket that serves as the termination point

of your connection. A connection is now established from a socket on some local port of

your system to the socket on port 80 on www.shu.edu.

• You type GET / HTTP/1.0: An appropriate data packet is sent through the Internet to the

receiving active socket on www.shu.edu. There the web server listening to port 80 picks

up the packet and reads your command. It sees "GET", which instructs it to look for a web

page. It sees "/" (a single slash), which means to get the top-level web page, which has

the actual URL http://www.shu.edu/index.html. It sees "HTTP/1.0", meaning that it is

to use version 1.0 of the http protocol. Nothing happens yet, because the web server is

waiting for other options that you may want to specify in accordance with the http 1.0

protocol.

16
 Depending on how telnet is configured you may or may not see what you are typing. Even if you do not see

anything, type the commands as indicated; they will be sent to the server whether you see them or not.

Java by Definition Chapter 9: Networking Page 16 of 78

Bert G. Wachsmuth DRAFT April 2009

• You press ENTER, which sends an empty line to the web server: That tells the web server

that your command is finished. The web server now retrieves the appropriate web page

from its hard disk, adds some header information to the page, wraps the data into one or

more packets including the IP number of the recipient, and sends the packet back to your

computer. There the telnet program receives the information and displays it on the

screen.17

• The web server now closes the connection and is ready to service another client request

or your telnet client again, should you so choose.

�

It should be noted that the above scenario is the same regardless of which particular system you are

using and independent of the system where the web server program is running. The point of

adhering to a specific protocol is that you can implement programs that speak that protocol on pretty

much any system you choose (as long as it can establish a TCP/IP Internet connection). This, of

course, makes client/server programming in Java particularly attractive: not only is the protocol

system independent, but also the actual Java classes are platform independent so that one client or

server program can run on pretty much any platform without having to recompile anything. This is

one of the reasons why Java is frequently called the "programming language of the Internet".

Now - finally - we are reading to create our own Java client programs in the next section, followed by

our own Java-based client/server packages in section 10.3. In fact, after all of this discussion

illustrating the rather complex nature of communications on the Internet it will turn out to be

surprisingly easy to create Java client and server programs.

9.2. Creating Client Programs

Creating client programs in Java is based on two classes in the java.net package, java.net.URL and

java.net.Socket. We have already defined the URL class in definition 9.5.6 so we need to define the

Socket class next.

Definition 10.2.1: The Socket Class

This class is part of the java.net package and implements a client socket.
18

 Constructing a new

Socket instance will turn a passive socket on a port into an active socket if a connection to the

specified port on the host can be established. The Socket class can return input streams to

receive information from the host and output streams to send information to the host. The Java

API defines Socket as follows:

 public class Socket extends Object
 { // selected constructor
 public Socket(String host, int port)
 throws UnknownHostException, IOException
 // selected methods

17
 A true web client such as Netscape would interpret the response and show you the information formatted

according to the HTML formatting tags included in the response.
18
 Recall that sockets are the terminal points for network connections and exist on a port. See definition 10.1.5 for

details.

Java by Definition Chapter 9: Networking Page 17 of 78

Bert G. Wachsmuth DRAFT April 2009

 public InetAddress getInetAddress()19
 public InetAddress getLocalAddress()
 public int getPort()
 public int getLocalPort()
 public InputStream getInputStream() throws IOException
 public OutputStream getOutputStream() throws IOException
 public void close() throws IOException
 }

The methods getInetAddress and getLocalAddress refer to the InetAddress class, which

represents an Internet address in Java.

Definition 10.2.2: The InetAddress Class

This class is part of the java.net package and represents an IP address. The Java API defines

InetAddress as follows:

 public final class InetAddress extends Object implements Serializable
 { // selected methods
 public String getHostName()20
 public String getHostAddress()
 public boolean equals(Object obj)
 }

Now we are ready to create our own client programs. We will start with simple clients connecting to

servers we have already seen when using the multi-purpose telnet client program in examples 10.1.9

and 10.1.10.

Simple Client Programs

Example 10.2.3:

Create a stand-alone Java program to connect to a web server on port 80. The program should

display the IP number of the host and of the client, as well as the port used on the host and on

the client. The host name should be entered as command line parameter. After displaying the

connection information, the program should disconnect.

To establish a connection, all we have to do is instantiate a proper Socket object. We can then use

the various methods of the Socket and InetAddress class to display the desired information. Our

class will only contain a simple standard main method as follows:

import java.net.*;
import java.io.*;

public class WebConnect21
{ public static void main(String args[])

19
 Calls to getInetAddress and getLocalAddress may result in a call to a DNS server and take additional time.

20
 Calling the getHostName method may result in a call to a DNS server to resolve an IP number. That takes

additional time so calling this method will delay a program.
21
 You should comment out the calls to getLocalAddress and getInetAddress, then run the program again to see

the performance hit you take when using these methods.

Java by Definition Chapter 9: Networking Page 18 of 78

Bert G. Wachsmuth DRAFT April 2009

 { try
 { Socket connection = new Socket(args[0], 80);
 System.out.println("Connection established:");
 System.out.println("Local Connection Information:");
 System.out.println("\t address:" +connection.getLocalAddress());
 System.out.println("\t port:" + connection.getLocalPort());
 System.out.println("Remote Connection Information:");
 System.out.println("\t address:" +connection.getInetAddress());
 System.out.println("\t port:" + connection.getPort());
 connection.close();
 }
 catch(UnknownHostException uhe)22
 { System.err.println("Unknown host: " + args[0]); }
 catch(IOException ioe)
 { System.err.println("IOException: " + ioe); }
 }
}

We can use this program to establish a connection on port 80 to Yahoo (www.yahoo.com), as shown in

figure 10.2.1.

Figure 10.2.1: Using WebConnect to connect to www.yahoo.com

You can see that the computer that runs the above program has been assigned the IP number

32.100.114.9 and the corresponding name slip-32-100-114-9.ny.us.ibm.net, which indicates a dialup

connection. The computer we have successfully connected to is called www.yahoo.com and has the IP

number 204.71.200.74. The port used on the remote computer is 80 as specified, but on our local

computer a “random” port with number 1052 was used to contain the socket.23

�

This class is exceedingly simple even though it really accomplishes quite a lot. The complexities of

establishing the connection is handled automatically by the Socket class. It is just as simple to

receive actual information from the server as the next example will show.

Example 10.2.4

Create a program that connects to a daytime server of an Internet system and prints out

the date and time received from that server.

Before we start we need to identify a system on the Internet where a daytime server is running. In

example 10.1.9 we used telnet to connect to a daytime server. Whatever IP name worked for that

example should also work fine here.

22
 Note that UnknownHostException is a subclass of IOException. Therefore it should be caught first so that the

IOException will not absorb the UnknownHostException.
23
 When you run this program, your local information will of course be slightly different.

Java by Definition Chapter 9: Networking Page 19 of 78

Bert G. Wachsmuth DRAFT April 2009

Our class will establish a connection similar to example 10.2.3. If a connection can be established, we

setup an input stream to receive information from the server using the getInputStream method of a

Socket. But a daytime server sends plain text, so that we need a character input stream whereas

getInputStream returns a byte-level InputStream. Therefore we convert the InputStream using an

InputStreamReader to a character-level stream as defined in definition 9.5.9. Then we use the

BufferedReader class from definition 9.3.1 to have access to a readLine method to read the single

line of text. Here is the code:

import java.io.*;
import java.net.*;

public class GetDayTime
{ public static void main(String args[])
 { String host = args[0];
 try
 { Socket connection = new Socket(host, 13);
 System.out.println("Connection established:");
 BufferedReader in = new BufferedReader(
 new InputStreamReader(
 connection.getInputStream()));
 String daytime = in.readLine();
 System.out.println("DayTime received: " + daytime);
 connection.close();
 }
 catch(UnknownHostException uhe)
 { System.err.println("Host not found: " + uhe); }
 catch(IOException ioe)
 { System.err.println("Error: " + ioe); }
 }
}

We can now use this class to get the time of various systems on the Internet as long as they have a

daytime server listening on port 13. Figure 10.2.2 shows the date and time obtained from two

systems.

Figure 10.2.2: Results of using GetDayTime for two daytime servers

�

As it turns out, sending data to a server is just as easy. In our next client example we will setup both

an input and an output stream so that we can send as well as receive data.

Example 10.2.5:

Create a Java client that connects to an echo server on port 7 of some system. It should

implement the echo protocol, which is particularly easy: an echo server waits for

Java by Definition Chapter 9: Networking Page 20 of 78

Bert G. Wachsmuth DRAFT April 2009

incoming data and returns whatever data it received through the network connection to

the client.24

This time we need to establish a connection to port 7 because standard echo servers listen on that

port. The code to connect to the server is similar to example 10.2.4 but we also need to create a

proper input and output stream. The input stream is used to send information to the echo server, the

output stream will receive the information from the server. The echo protocol is simple:

• every line sent is immediately echoed back

That means for our program that every “send” should be followed by a “read” until the user closes the

connection. The actual code is starts out as before to establish the connection. Then we create a new

DataInputStream using the InputStream returned by the socket’s getInputStream method and a

new DataOutputStream using the OutputStream returned by the getOutputStream method.

We will use the Console class from section 2.4, example 5, to ask the user for input. Then we send

each input string to the echo server and wait for the answer. Once the answer has been received we

continue the process until the echo server echoes .QUIT. Here is the code:

import java.net.*;
import java.io.*;

public class EchoClient
{ public static void main(String args[])
 { try
 { Socket connection = new Socket(args[0], 7);
 System.out.println("Connection established:");
 DataInputStream in = new DataInputStream(
 connection.getInputStream());
 DataOutputStream out = new DataOutputStream(
 connection.getOutputStream());
 String line = new String("");
 while (!line.toUpperCase().equals(".QUIT"))
 { System.out.print("Enter string: ");
 line = Console.readString();
 System.out.println("\tSending string to server ... ");
 out.writeUTF(line);
 System.out.println("\tWaiting for server response ...");
 line = in.readUTF();
 System.out.println("Received: " + line);
 }
 in.close();
 out.close();
 connection.close();
 }
 catch(UnknownHostException uhe)
 { System.err.println("Unknown host: " + args[0]); }
 catch(IOException ioe)
 { System.err.println("IOException: " + ioe); }
 }
}

Figure 10.2.3 shows our EchoClient in action, communicating with an echo server over the Internet.

24
 Many Unix systems on the Internet do run an echo server and the majority of web servers are Unix systems.

Therefore, chances are high that you can simply use the name of a web server system to try to connect to the echo

port. If you can not find a host that works, try using the name www.shu.edu.

Java by Definition Chapter 9: Networking Page 21 of 78

Bert G. Wachsmuth DRAFT April 2009

Figure 10.2.3: The EchoClient class in action

�

Note that it really does not matter what type of input and output stream we use as long as they are

compatible with each other. After all, the echo server will faithfully echo whatever we send it, either

byte or character based information. In the next example we will use a character-based output

stream to send text to an smtp server, which means that we need to convert an OutputStream to a

Writer.

Definition 10.2.6: The OutputStreamWriter Class

An OutputStreamWriter is a bridge from byte streams to character streams: It writes characters

to a stream, translating them to bytes. It uses the platform's default encoding, but another

encoding may be specified. The Java API defines OutputStreamWriter as follows:

 public class OutputStreamWriter extends Writer
 { // selected constructor
 public OutputStreamWriter(OutputStream out)
 }

As with a FileWriter, an OutputStreamWrite can be wrapped inside a BufferedWriter for

better efficiency.

Now we can construct our next example, a class that sends electronic mail through an smtp server.

Example 10.2.7:

Review the sample session listed in table 10.1.10 describing parts of the smtp protocol.

Then create a class that can send email to a specified user, using an smtp server of some

Internet system.25

According to table 10.1.10 it should be easy to send email via an smtp server. We will use the

following scheme:

25
 Most Unix systems run an smtp server, but not all smtp servers will deliver email from foreign systems. The

safest bet is the smtp server provided by your Internet Service Provider.

Java by Definition Chapter 9: Networking Page 22 of 78

Bert G. Wachsmuth DRAFT April 2009

• define the smtp server to use via command line parameter

• bring up a frame where the user can enter sender, recipient, and message

• when the user clicks on Send, establish a connection to the smtp server

• define character input and output stream through the connection socket

• receive identification message from server

• send HELO computername.domain information, receive answer from server

• send MAIL FROM:<yourname@youremail.domain>, receive answer from server

• send RCPT TO:<recipient@address.domain>, receive answer from server

• send DATA, receive answer from server

• send actual message followed by a single line with a period, receive answer from server

• close all streams and disconnect

Based on that scheme it is easy to create the class as follows:

import java.io.*;
import java.net.*;
import java.awt.*;
import java.awt.event.*;

public class MailMessage extends Frame implements ActionListener
{ private TextField sender = new TextField("wachsmut@shu.edu", 50);
 private TextField recipient = new TextField(50);
 private TextArea message = new TextArea(6, 50);
 private Button send = new Button("Send Message");
 private Button cancel = new Button("Cancel Message");
 private String host = null;
 private BufferedReader in = null;
 private PrintWriter out = null;
 public MailMessage(String _host)
 { super("Mail Message");
 host = _host;
 Panel labels = new Panel(new GridLayout(2,1));
 labels.add(new Label("Sender: "));
 labels.add(new Label("Recipient: "));
 Panel fields = new Panel(new GridLayout(2,1));
 fields.add(sender); fields.add(recipient);
 Panel head = new Panel(new BorderLayout());
 head.add("West", labels); head.add("Center", fields);
 Panel buttons = new Panel(new FlowLayout());
 buttons.add(send); buttons.add(cancel);
 setLayout(new BorderLayout());
 add("North", head); add("Center", message); add("South", buttons);
 send.addActionListener(this); cancel.addActionListener(this);
 validate(); pack(); show();
 }
 private void cancel()
 { System.exit(0); }
 private void sendWithAnswer(String msg) throws IOException
 { out.println(msg); flush();26
 System.out.println("Server: " + in.readLine());
 }
 private void send()
 { try
 { Socket connection = new Socket(host, 25);

26
 When sending text through a buffered output stream you need to call flush to ensure that data is actually sent

through the stream. If you do not call flush, data will be sent when the buffer is full, which means that the server

will probably never receive the command you want to send.

Java by Definition Chapter 9: Networking Page 23 of 78

Bert G. Wachsmuth DRAFT April 2009

 in = new BufferedReader(new InputStreamReader(
 connection.getInputStream()));
 out = new PrintWriter(new OutputStreamWriter(
 connection.getOutputStream()));
 System.out.println("Server says: " + in.readLine());
 sendWithAnswer("HELO my.system.com");
 sendWithAnswer("MAIL FROM:<" + sender.getText().trim() + ">");
 sendWithAnswer("RCPT TO:<" + recipient.getText().trim() + ">");
 sendWithAnswer("DATA");
 out.println(message.getText()); out.println(".");
 System.out.println("Server says: " + in.readLine());
 in.close(); out.close(); connection.close();
 System.out.println("Message sent. Quitting.");
 }
 catch(UnknownHostException uhe)
 { System.err.println("Unknown host: " + uhe); }
 catch(IOException ioe)
 { System.err.println("Error: " + ioe); }
 finally
 { System.exit(0); }
 }
 public void actionPerformed(ActionEvent ae)
 { if (ae.getSource() == send)
 send();
 else if (ae.getSource() == cancel)
 cancel();
 }
 public static void main(String args[])
 { MailMessage mm = new MailMessage(args[0]); }
}

This is a very simple exchange with an smtp server. For one thing we assume that the messages

returned by the server do not contain any error message. But the program will work, assuming you

can find an smtp server that is willing to transfer your message.27 Figures 10.2.4 and 10.2.5 show an

email message sent by our class and the messages that the server returned.

Figure 10.2.4: Message entered into MailMessage frame

27
 Using this program you could use president@whitehouse.gov as sender and attempt to send your message via

the smtp server of the machine whitehouse.gov. If that smtp server did transfer your message, it would look

authentic enough to puzzle a good many people. Therefore, many smtp servers do not transfer mail from systems

outside their own domain. In addition, smtp servers often keep a usage log file. It is not advisable to attempt to use

whitehouse.gov.

Java by Definition Chapter 9: Networking Page 24 of 78

Bert G. Wachsmuth DRAFT April 2009

Figure 10.2.5: Messages returned by smtp server while sending above message

�

Our final example will show a more sophisticated client that will interpret the answers return by the

server it connects to.

A WebViewer Client

As we have seen, creating client programs turned out to be pretty simple. Our next example will be

somewhat more elaborate, not because of any network communications problem but rather because

what should be accomplished once data has been successfully retrieved.

Example 10.2.8:

Create a stand-alone WebViewer program that connects to a web server on port 80 and

retrieves a specified web page from that server. The user should be able to enter the URL

to display in a text field, and the web page should appear in a TextArea. Your program

should not attempt to properly interpret all HTML tags (as Netscape would), but it should:

• display all hyperlinks contained in the web page

• interpret some basic HTML formatting tags such as <P> and
 to make the page

somewhat readable

• hide all HTML formatting tags that it does not interpret

Note that a web server sends the contents of a web page as character data.

This example presents us with several problems:

• How do I connect to a web server?

• What commands, according to the http protocol, will cause a web server to relinquish a web

page?

• What are HTML formatting tags in the first place?

• How do I differentiate between HTML formatting tags and standard text?

• How do I interpret some HTML tags and ignore others?

The first question is actually the simplest: our program connects to a web server as in example

10.2.4, then establishes input and output streams similar to the example 10.2.5. The only difference

to the echo server is that we need character-based streams, not data input/output streams.

The second question is also simple since we have already done that in example 10.1.10 using Telnet.

We know that sending the command

Java by Definition Chapter 9: Networking Page 25 of 78

Bert G. Wachsmuth DRAFT April 2009

GET / HTTP/1.0

followed by hitting ENTER twice will cause a web server to display a web page. To get a specific page

from the web server, we will therefore try the command

GET /directory/filename.html HTTP/1.0

followed by hitting (or sending) ENTER twice.

We don’t have the time to explain the details of HTML formatting tags, but here is a simple example

that explains the basic.28

Web pages are stored as plain text file, containing text and a variety of tags that cause

specific actions when interpreted by a web client. The HTML formatting tags are always

enclosed in angular brackets “<” and “>” and these special characters do not show up

otherwise in the text. Formatting tags have a name (one or more letters) and can contain any

number of optional parameters. Parameters can stand alone, or are in the form of

PARAM=”VALUE”, where the quotation marks are not necessarily present and could be single or

double quotation marks. Most, but not all, formatting tags have an “ending” tag that has the

same name as the original tag, prefaced by a forward slash “/”. Here is an example, with the

formatting tags in bold:

<HTML>
<HEAD>
<TITLE>This is a Title</TITLE>
</HEAD>
<BODY>
<H1>This is a Headline</H1>
This is a line of plain text, including some bold and some
<I>italics</I>. The line breaks must be specifically indicated by tags. The
<P>
paragraph tag implies a new paragraph, adding some extra space between them.
The line-break tag

breaks a line at that spot, but does not add extra spacing. There are also hyperlinks that make text clickable
and specify which site to go to. Hyperlinks can get optional parameters such as
the "new page target" option which will
cause the specified page to appear in a new browser window.
<P>
There are different tags for bulleted and numbered lists:

 item 1 of bulleted list
 item 2 of bulleted list

and

 item 1 of numbered list (automatically numbered)
 item 2 of numbered list (automatically numbered)

The end of an HTML document is noted using special ending tags.
</BODY>
</HTML>

28
 See definition 6.3.21 for a description of HTML formatting tags.

Java by Definition Chapter 9: Networking Page 26 of 78

Bert G. Wachsmuth DRAFT April 2009

This example does not come close to explaining all that can be accomplished with HTML

tags, but it should serve as a brief example that should be enough complete this example.29

Note that even when you use a web editor such as Netscape Composer or Microsoft

FrontPage, the documents saved will include HTML formatting characters just as in this

example.

The problem of extracting and interpreting the HTML tags seems somewhat related to the problem of

interpreting mathematical expression that we solved successfully in the command-line Calculator

example in examples 8.2.1, 8.2.3, and 8.2.4. There we used different types of tokens to distinguish

between operators and numbers, so we will try a similar approach here. Recall the approach we used

for the Calculator program:

• we used a generic Token class as the base class

• we used a TokenNumberic and TokenOperator class to distinguish between operators and

numbers

• the TokenOperator class “knew” how to interpret the various operators, i.e. it could perform

the mathematical operations represented by the operator

We’ll try the same here: we will use a generic HTML class as the base class, extend it to classes HTMTag

and HTMLText to hold formatting tags or text, respectively, and give the HTMLTag class the necessary

know-how to interpret those tags that need interpretation. Assuming we have created these classes

already, the main work of loading and interpreting web page content will be done by the class

WebPage, structured as follows:

public class WebPage
{ private LinkedList tokens = new LinkedList();

 public WebPage(String host, int port, String file)
 public String getContent()
 private void tokenizer(String content)
 private String loader(String host, int port, String file)
}

The linked list tokens will contain a list of tokens in the order they appear in the web page.30

The constructor calls the private loader method with the appropriate input parameters and passes

its output through the tokenizer method:

public WebPage(String host, int port, String file)
{ tokenizer(loader(host, port, file)); }

The loader, in turn, will connect to the web server and retrieve the web page as a single string with

formatting tags and text mixed just as in the original page. It will use character streams to transfer

data, using the InputStreamReader and OutputStreamWriter classes as bridges between byte-level

input/output streams returned by getOutputStream and getInputStream and the character-level

classes we need:

private String loader(String host, int port, String file)
{ String content = new String(""), line = new String("");
 try

29
 An added problem interpreting HTML formatting tags is that not all HTML documents are “well-formed”, i.e. they

may not include some tags or options that really should be present according to the HTML standard.
30
 A queue, actually, would be more appropriate, but for simplicity we’ll use the build-in Java class LinkedList

instead of a Queue.

Java by Definition Chapter 9: Networking Page 27 of 78

Bert G. Wachsmuth DRAFT April 2009

 { Socket client = new Socket(host, port);
 PrintWriter out = new PrintWriter(
 new OutputStreamWriter(client.getOutputStream()));
 BufferedReader in = new BufferedReader(
 new InputStreamReader(client.getInputStream()));
 out.println("GET " + file + " HTTP/1.0");
 out.println("");
 out.flush();31
 while ((line = in.readLine()) != null)
 content += line;
 in.close(); out.close(); client.close();
 }
 catch(UnknownHostException uhe)
 { content = "<HTML>No content: host " + host + " unknown</HTML>";}
 catch(IOException ioe)
 { content = "<HTML>No content: host " + host + " refused</HTML>"; }
 return content;
}

The smartest method of WebPage is the tokenizer. It takes as input the raw string obtained by the

loader from the web server and breaks it up into HTMLTag and HTMLText objects. The algorithm used

is simple:

• first, we break up the entire raw string into “tokens” according to the “<” character. That will

ensure that each “token” will start with an HTML tag, but it may also include “standard” text.

• second, we break up each token from the first step according to the “>” character. That will

result in two pieces, the first one being an HTML tag (with options if present) and the second

one in text without formatting tags (could be empty).

In the second step we also create the appropriate HTMLTag or HTMLText objects and insert them into

the list tokens:

private void tokenizer(String content)
{ StringTokenizer tags = new StringTokenizer(content, "<");
 while (tags.hasMoreTokens())
 { StringTokenizer split = new StringTokenizer(tags.nextToken(), ">");
 if (split.hasMoreTokens())
 tokens.addLast(new HTMLTag(split.nextToken()));
 if (split.hasMoreTokens())
 tokens.addLast(new HTMLText(split.nextToken()));
 }
}

Finally, the getContent method will iterate through the elements of the tokens list and get their

string representations. Any formatting will be performed by the HTML classes through their toString

methods32:

public String getContent()
{ String content = new String("");
 for (Iterator iterator = tokens.iterator(); iterator.hasNext();)
 content += iterator.next().toString();

31
 As we mentioned, when using character output streams we must flush the streams to cause our command(s) to be

sent to the server.
32
 Our approach of letting the HTMLTag class decide on the formatting is much too simple. To properly format HTML

documents we must take other formatting tags into account, not only the current one. For example, to properly

decide on the right indentation of a paragraph we must take into account tags such as <BLOCKQUOTE> and that

occurred before the current tag, and to properly format a table requires knowledge of tags after the current one.

Java by Definition Chapter 9: Networking Page 28 of 78

Bert G. Wachsmuth DRAFT April 2009

 return content;
}

To handle the two type of HTML objects we want to deal with we’ll create the following classes:

• class HTML: base class for the two different types of information contained in a web page

• class HTMLText: extends HTML and stores a text piece of a web page

• class HTMLTag extends HTML and stores a formatting tag; also knows how to interpret some

tags and ignore others

Each class is simple, so here is the source code for all of them:

public class HTML
{ protected String token;
 public String toString()
 { return token; }
}

public class HTMLText extends HTML
{ public HTMLText(String _token)
 { token = _token.trim(); }
}

public class HTMLTag extends HTML
{ public HTMLTag(String _token)
 { token = _token.trim(); }
 public String toString()
 { String tag = token.toUpperCase();
 if ((tag.startsWith("P")) || (tag.startsWith("DIV")) ||
 (tag.startsWith("H")) || (tag.startsWith("UL")) ||
 (tag.startsWith("DL")) || (tag.startsWith("/UL")) ||
 (tag.startsWith("/DL")) || (tag.startsWith("BR")))
 return "\n";
 else if (token.startsWith("LI"))
 return "\n * ";
 else if (tag.startsWith("A "))
 return " [" + token + "] ";
 else
 return "";
 }
}

The HTMLTag class, in particular, class will perform some non-standard interpretation of some

standard HTML tags, mainly adding line breaks to make the resulting text somewhat readable. It will

also display the hyperlinks inside square brackets and cause every other tag not specifically

mentioned to be ignored in the final else statement.

What’s left is the final class containing the GUI elements and the button to load a particular web

page as specified by the user in a standard full URL33:

import java.awt.*;
import java.awt.event.*;
import java.net.*;

public class WebViewer extends Frame implements ActionListener
{ private TextField address = new TextField();
 private TextArea display = new TextArea();

33
 See definition 9.5.4 for the definition of a full URL.

Java by Definition Chapter 9: Networking Page 29 of 78

Bert G. Wachsmuth DRAFT April 2009

 private Button go = new Button("View Page");
 private class WindowCloser extends WindowAdapter
 { public void windowClosing(WindowEvent we)
 { System.exit(0); }
 }
 public WebViewer()
 { super("Web Viewer Lite");
 Panel north = new Panel();
 north.setLayout(new BorderLayout());
 north.add("West", new Label("URL:"));
 north.add("Center", address);
 north.add("East", go); go.addActionListener(this);
 Panel center = new Panel();
 setLayout(new BorderLayout());
 add("North", north);
 add("Center", display);
 addWindowListener(new WindowCloser());
 validate(); pack(); setVisible(true);
 }
 public void actionPerformed(ActionEvent ae)
 { if (ae.getSource() == go)
 showURL(address.getText());
 }
 public void showURL(String address)
 { try
 { setCursor(new Cursor(Cursor.WAIT_CURSOR));
 URL url = new URL(address);
 String host = url.getHost();
 int port = url.getPort();
 if (port <= 0)
 port = 80;
 WebPage page = new WebPage(host, port, url.getFile());
 display.setText(page.getContent());
 }
 catch(MalformedURLException murle)
 { display.setText("Invalid URL: " + address); }
 finally
 { setCursor(new Cursor(Cursor.DEFAULT_CURSOR)); }
 }
 public static void main(String args[])
 { WebViewer viewer = new WebViewer(); }
}

When all classes are compiled, the WebViewer will produce results similar to the one shown in figure

10.2.6 (only when you are connected to the Internet, of course):

Figure 10.2.6: The WebViewer clien displaying a text-only web page

Java by Definition Chapter 9: Networking Page 30 of 78

Bert G. Wachsmuth DRAFT April 2009

This program can reveal interesting responses coming from a web server that you would not see

using a regular web client.

Figure 10.2.7: The WebViewer client program displaying a error message received from an httpd server

Figure 10.2.7 shows a so-called "301 redirect message". The URL

http://pirate.shu.edu/~wachsmut is almost correct, but it is missing the last “slash”. That will

cause the Apache web server to issue a “301” redirect code, which in turn would cause a regular web

client to automatically issue another call to the web server for the URL mentioned in the “moved

permanently” message. Thus, you would not see this message in a regular web client, but you also

would not be made aware of the fact that forgetting the final slash will cause a web client to issue

two calls, slowing it down.

�

This client, while simple, provides lots of opportunities that we will pursue in the exercises. As a

straightforward improvement we could extract the hyperlinks and make them clickable by adding

them to a List. We could also implement "Backward" and "Forward" buttons similar to a real web

client by using appropriate stacks. Finally we could load a web page asynchronously in a separate

thread. But there are plenty of less obvious possibilities as well: we could use this client as blueprint

for a data mining program that explores a web site and extracts some or all web pages linked from

its main web page. Or we could use a similar client to extract particular information such as stock

quote or weather information from some web site, format it appropriately, and save it to some other

site to embed the information into that site's web pages.

If nothing else, we have learned at least one thing from this example: don’t forget the final slash in a

URL, it will slow down the web server's response time unnecessarily.

9.3. Creating Server Programs

Now we are ready to create our own server programs, together with associated client programs.

Creating client programs is based, for the most part, on the Socket class. Creating server programs,

as it turns out, is based on a similar class called ServerSocket that is also part of the java.net

package. The class is defined as follows:

Java by Definition Chapter 9: Networking Page 31 of 78

Bert G. Wachsmuth DRAFT April 2009

Definition 10.3.1: The ServerSocket Class

This class represents a socket that can act as a server. A server socket binds itself to a particular

port of the machine and usually waits for an incoming connection via the accept method. That

method blocks until a connection is received, in which case it returns a new socket that can serve

as an endpoint for the requested connection. The Java API defines ServerSocket as follows:

 public class ServerSocket extends Object
 { // selected constructor
 public ServerSocket(int port) throws IOException
 // selected methods
 public InetAddress getInetAddress()
 public int getLocalPort()
 public Socket accept() throws IOException
 public void close() throws IOException
 }

The basic idea of setting up a server program is therefore simple: we create an instance of a

ServerSocket, call on its accept method and wait. When a client connects, the accept method

returns a Socket, and in the previous section we have learned everything about that class.

Example 10.3.2:

Create a “LoggingServer” that simply prints out (logs) all requests that a client makes.

Then create a simple LoggingClient that connects to the same port that the server is

running and sends strings of text obtained from the user. Run both classes on one

computer, using the host name localhost (with IP number 127.0.0.1) and any mutually

known port number.34 Note that you do not have to be connected to the Internet to run

this client/server combination but your networking software must be loaded. If you have

problems, do connect to the Internet even if you are not using an outside connection.

Following the basic idea mentioned we will instantiate a ServerSocket on, say, port 1234, then call

on the accept method. After a connection is established, we’ll setup a DataInputStream using the

Socket returned by accept. Then we enter a loop, listening on the input stream for data sent to our

server until we read the string .QUIT:

import java.net.*;
import java.io.*;

public class LoggingServer
{ public static void main(String args[])
 { try
 { ServerSocket server = new ServerSocket(1234);
 System.out.println("Server started: " + server.getLocalPort());
 Socket connection= server.accept();
 System.out.println("Connection established.");
 DataInputStream in = new DataInputStream(
 connection.getInputStream());
 String line = new String("");
 while (!line.toUpperCase().equals(".QUIT"))
 { line = in.readUTF();
 System.out.println("<= " + line);
 }
 in.close(); connection.close(); server.close();

34
 If you are using a Unix systems, make sure to choose ports higher than 1024. Using port numbers less than 1024

require special rights that you may not have on a Unix system.

Java by Definition Chapter 9: Networking Page 32 of 78

Bert G. Wachsmuth DRAFT April 2009

 }
 catch(IOException ioe)
 { System.err.println("Error: " + ioe); }
 }
}

The corresponding client is almost identical to our EchoClient from example 10.2.5, but we only

need to establish a DataOutputStream in this case. We will use the Console class from section 2.4,

example 5, to ask the user for input:

import java.io.*;
import java.net.*;

public class SimpleClient
{ public static void main(String args[])
 { try
 { Socket connection = new Socket(args[0], 1234);
 System.out.println("Connection established:");
 String line = new String("");
 DataOutputStream out = new DataOutputStream(
 connection.getOutputStream());
 while (!line.equalsIgnoreCase(".QUIT"))
 { System.out.print("Enter text (or .quit) => ");
 line = Console.readString();
 out.writeUTF(line);
 }
 out.close();
 connection.close();
 }
 catch(UnknownHostException uhe)
 { System.err.println(uhe); }
 catch(IOException ioe)
 { System.err.println(ioe); }
 }
}

Now we can test our client/server combination by running both programs on one system. Both

programs, obviously, require some command line input to start properly and the port numbers must

match to make a connection. See figure 10.3.1 for a sample session with our logging client/server

classes.

Figure 10.3.1: Sample session with LoggingServer and SimpleClient

�

Our server works fine, but it has two principle flaws we must fix before attempting any "real"

examples:

• After the client terminates the connection, the server also shuts down. It must be restarted

manually before the next client can be handled.

• Our server can not handle more than one connection. As long as one client is connected, no

other client can access our server.

Java by Definition Chapter 9: Networking Page 33 of 78

Bert G. Wachsmuth DRAFT April 2009

A Server for Multiple Simultaneous Clients

To make client/server programming more useful, we need to create servers that can handle multiple

clients simultaneously, so another reasonably simple example is in order before moving on to "real"

examples.

Example 10.3.3:

Create an echo server and test it against the echo client we created before. Recall that

the echo protocol specifies that the server should wait for incoming connection, receive a

line of text, then send that line back to the client without changes, until the client

terminates the connection. Your echo server should not use the "standard echo" port

because that port may already be in use. Instead, both your echo server and client should

use some mutually agreed upon port with number higher than, say, 2000. Make sure

that the server does not terminate when a client is done, and that it can handle multiple

clients simultaneously.

We will solve this task in several stages. The first stage will be a program very similar to the

LoggingServer in example 10.3.2, but it will use an additional DataOutputStream to echo any strings

received back to the client instead of printing them out on the console.

import java.io.*;
import java.net.*;

public class EchoServer
{ public static void main(String args[])
 { try
 { ServerSocket server = new ServerSocket(
 Integer.parseInt(args[0]));
 System.out.println("Server started on " +server.getLocalPort());
 Socket connection= server.accept();
 System.out.println("Connection established.");
 DataInputStream in = new DataInputStream(
 connection.getInputStream());
 DataOutputStream out = new DataOutputStream(
 connection.getOutputStream());
 String line = new String("");
 while (!line.equalsIgnoreCase(".QUIT"))
 { line = in.readUTF();
 System.out.println("Echoing: " + line);
 out.writeUTF(line);
 }
 in.close(); out.close(); connection.close(); server.close();
 }
 catch(IOException ioe)
 { System.err.println("Error: " + ioe); }
 }
}

This simple EchoServer will work just fine against the EchoClient we created in example 10.2.5,

because client and server speak the same protocol. Actually, the EchoClient from example 10.2.5

uses port number 7, so we need to change that number to match the port where the current server is

listening. We will leave this small modification to you. Of course this server can still handle only one

client and quits when that client is done.

Java by Definition Chapter 9: Networking Page 34 of 78

Bert G. Wachsmuth DRAFT April 2009

In our second stage we will modify the EchoServer so that it stays active if a client quits. The idea is

simple: the server uses the accept method to wait for a connection. Since accept is called exactly

once, the server can only handle exactly one connection. To change this, we embed the call to accept

in a loop as follows (the new code is in bold and italics):

public class EchoServer
{ private static boolean running = true;
 public static void main(String args[])
 { try
 { ServerSocket server = new ServerSocket(
 Integer.parseInt(args[0]));
 System.out.println("Server started on " +server.getLocalPort());
 while (running)
 { Socket connection= server.accept();
 System.out.println("Connection established.");
 DataInputStream in = new DataInputStream(
 connection.getInputStream());
 DataOutputStream out = new DataOutputStream(
 connection.getOutputStream());
 String line = new String("");
 while (!line.equalsIgnoreCase(".QUIT"))
 { line = in.readUTF();
 System.out.println("Echoing: " + line);
 out.writeUTF(line);
 }
 in.close(); out.close(); connection.close();
 System.out.println("Connection closed.");
 }
 }
 catch(IOException ioe)
 { System.err.println("Error: " + ioe); }
 }
}

This, indeed, will work, but there are two problems: First, we were somewhat too successful because

our server will now run all the time and can only be shut down by killing the process (by pressing

CONTROL-C, for example). We really want a server that stays active for additional connections but

also shuts down gracefully when told. The second problem is more serious: if a client connects

properly but disconnects improperly (by pressing CONTROL-C in the client program, for example),

then the server throws an IOException and quits after all. This is a situation that any Internet

server must handle: the Internet is, for a variety of reasons, unreliable and connections can

terminate at any time.35

To fix these problems, we'll modify the code as follows:

• First, we will modify the protocol that both client and server need to understand: if a client

sends the string .SHUTDOWN then the server should terminate the connection to that client

and shut down.

• Second, we'll add another try-catch block inside the while loop to ensure that errors in

communicating to one client will not terminate the server.

Here is the new code, with the changes shown in bold and italics

public class EchoServer

35
 The easiest scenario for a connection failure is that the EchoClient uses a dialup connection and which is

terminated before properly closing the client.

Java by Definition Chapter 9: Networking Page 35 of 78

Bert G. Wachsmuth DRAFT April 2009

{ private static boolean running = true;
 public static void main(String args[])
 { try
 { ServerSocket server = new ServerSocket(
 Integer.parseInt(args[0]));
 System.out.println("Server started on " +server.getLocalPort());
 while (running)
 { Socket connection= server.accept();
 System.out.println("Connection established.");
 DataInputStream in = new DataInputStream(
 connection.getInputStream());
 DataOutputStream out = new DataOutputStream(
 connection.getOutputStream());
 String line = new String("");
 try
 { while (!line.equalsIgnoreCase(".QUIT"))
 { line = in.readUTF();
 System.out.println("Echoing: " + line);
 if (line.toUpperCase().equals(".SHUTDOWN"))
 { running = false;
 line = ".QUIT";
 }
 out.writeUTF(line);
 }
 in.close(); out.close(); connection.close();
 System.out.println("Connection closed.");
 }
 catch(IOException ioe)
 { System.out.println("Connection closed unexpectedly."); }
 }
 System.out.println("Server closed");
 }
 catch(IOException ioe)
 { System.err.println("Error: " + ioe); }
 }
}

This server will stay active reliable and can handle multiple clients, but only one client at a time.36

Our third and final version will overcome this last restriction by handling clients in independent

threads:

• we will create a class EchoServerThread extending Thread and move the code that actually

handles a connection into the run method of that thread

• we will modify the EchoServer so that it starts a new thread every time a connection is made

Here is the new EchoServerThread class, containing virtually the same code that handled a

connection as before, just relocated into the run method of the thread:

public class EchoServerThread extends Thread
{ private Socket connection;
 public EchoServerThread(Socket _connection)
 { connection = _connection;
 start();
 }
 public void run()

36
 If a second client tries to connect while the first client is still active, it will be put on hold until the first client

quits. The second client will not see any error message or throw any exceptions, it will simply wait until the first one

is done.

Java by Definition Chapter 9: Networking Page 36 of 78

Bert G. Wachsmuth DRAFT April 2009

 { try
 { DataInputStream in = new DataInputStream(
 connection.getInputStream());
 DataOutputStream out = new DataOutputStream(
 connection.getOutputStream());
 String line = new String("");
 while (!line.equalsIgnoreCase(".QUIT"))
 { line = in.readUTF();
 System.out.println("Echoing: " + line);
 out.writeUTF(line);
 }
 in.close(); out.close(); connection.close();
 System.out.println("Connection closed.");
 }
 catch(IOException ioe)
 { System.out.println("Connection closed unexpectedly."); }
 }
}

Thus, the original EchoServer class is no longer responsible for managing a connection. Instead, it

will simply start a new EchoServerThread whenever a connection is made so that it is free to handle

the next connection while leaving the details of the currently active connection to the thread.

public class EchoServer
{ private static boolean running = true;
 public static void main(String args[])
 { try
 { ServerSocket server = new ServerSocket(
 Integer.parseInt(args[0]));
 System.out.println("Server started on " +server.getLocalPort());
 while (running)
 { Socket connection= server.accept();
 System.out.println("New connection moved to thread.");
 EchoServerThread handler = new EchoServerThread(connection);
 }
 }
 catch(IOException ioe)
 { System.err.println("Error: " + ioe); }
 }
}

Finally, we have achieved our goal: with these two relatively simple classes we have created a stable

Internet server that can handle multiple clients simultaneously.37

�

The client/server system from example 10.3.3 can serve as a model for other server programs that

need to handle multiple clients at the same time.

Definition 10.3.4: Rule of Thumb to Create a Multi-Client Server

To create a server program that can service multiple clients simultaneously, you could follow

these guidelines:

37
 We have lost the ability to shutdown the server gracefully. In principle, any of the threads could be used to set the

field running of the server to false. That would shutdown the server, but not right away. Therefore the server is

best terminated by pressing CONTROL-C. Alternatively, the server itself could use a thread to wait for incoming

connections.

Java by Definition Chapter 9: Networking Page 37 of 78

Bert G. Wachsmuth DRAFT April 2009

Create two classes. The first class waits for connections and passes active connections to the

second class. The second class extends Thread and handles the communication with one client.

• The first class instantiates a new ServerSocket on a given port. The accept method of that

ServerSocket should be inside an infinite loop. If a connection is established, the class

passes the Socket returned by accept to a new instance of the second class extending

Thread.

• The thread class uses the Socket received as input parameter during instantiation to setup

input and output streams to the active client. It then handles all communications according to

the agreed-upon protocol inside its run method.

Client/server solutions can be particularly useful to overcome the security restrictions imposed on

applets. As outlined in definition 9.5.2, applets can not directly manipulate files, not even list files in

a given directory. In our next example we will create a client/server combination where an applet can

direct a server to perform actions that the applet by itself is not allowed to do, such as obtain a

directory listing.

Directory Client/Server System

Example 10.3.5

In example 9.2.13 we created a standalone program to list the contents of a given

directory. Create a client/server combination that will allow an applet to list files and

directories on the server system. The user should be able to move up and down the

directory structure of the server, listing the contents of each directory as well as a brief

summary of each directory.38 In this example, construct only the server, making sure to

clearly specify the protocol that the server understands.

It should be clear from the outset that this client/server package, if implemented, may compromise

the security of the server system. After all, applets have security restrictions for a good reason, and

while technically possible it may not be advisable to bypass these restrictions with a client/server

solution.

Be that as it may, to proceed with this example you should first review example 9.2.13 where the

File class was used extensively to list the contents of a directory. Code similar to this will be

embedded in the server that sends the contents of a directory to an applet instead of displaying it on

the console. The first question we need to solve is exactly what should our server be able to do, and

exactly how do we get it to perform that action. In other words, we need to specify the protocol that

the server can understand. We decide to use the capabilities outlined in table 10.3.2.

Command Server Action
pwd Sends the current directory
chdir .. Changes directory on the server to the parent of the current

directory if possible
chdir newdir Changes directory on the server to the directory specified in

newDir if possible
list Sends a list of files and directories inside the current directory

38
 This example could serve as the first stage of an FTP-like client/server package that can be used to transfer data

from the applet to the server.

Java by Definition Chapter 9: Networking Page 38 of 78

Bert G. Wachsmuth DRAFT April 2009

pass passwd Checks to see if passwd is the password that the server expects.

If so, sends "okay" otherwise sends "error".

anything else Terminates the connection
Table 10.3.2: The outline of the protocol for our directory server

This is not precise enough. What exactly is the data type of the commands sent to the server? What

type does the server return when it sends the "current directory" or a "list of files"? Therefore we

need to clarify the protocol outlined in table 10.3.2 as follows:

• The server accepts commands consisting of exactly two strings. The first string must be one

of the commands "pwd", "chdir", "list", or "pass". The second string is a parameter to the

first command. If the first command string does not need a parameter, the second string will

be ignored but must be present. Any other command and parameter will cause the server to

disconnect.

• If the server receives the "pwd" command and an arbitrary parameter it will send the current

directory as a string.

• If the server receives the "chdir" command with parameter ".." it will attempt switch to the

parent of the current directory if possible and send the new current directory as a string.

• If the server receives the "chdir" command with a parameter different from ".." it will

attempt to switch to the directory specified by the parameter and send the new current

directory as a String.

• If the server receives the "list" command with an arbitrary parameter it will send an array

of type File[] consisting of the contents of the current directory.

• If the server receives the "pass" command it will check whether the following parameter is

equal to a preset password. If so it will send the string "okay", otherwise it will send the

string "error" and disconnect.

• The first command the server expects is the "pass" command. Only after sending the correct

password will the server allow further commands.

This protocol implicitly dictates the type of streams that the server needs to setup:

• since it receives only String types, the input stream can be a DataInputStream

• since it needs to send String types as well as an array of File the output stream must be an
ObjectOutputStream

Once we have carefully specified the protocol, it is not hard to create the server class. Our server,

like any good server, should be able to handle multiple clients simultaneously. Therefore definition

10.3.4 provides the basic blueprint for our classes.

We will create a DirServer class that establishes a ServerSocket and uses a DirThread class to

handle any incoming connection. The details of the connection are left to the DirThread class,

according to definition 10.3.4. The class also defines the password that the client needs to send, as

well as a version string that will be used to ensure that only proper clients can connect to this server.

The code for DirServer is quite simple:

import java.io.*;
import java.net.*;

public class DirServer
{ protected static final String PASSWD = "jbd007";
 protected static final String VERSION = "dirserver 1.0";
 private static final int PORT = 8765;
 public static void main(String args[])
 { try

Java by Definition Chapter 9: Networking Page 39 of 78

Bert G. Wachsmuth DRAFT April 2009

 { ServerSocket server = new ServerSocket(PORT);
 System.out.println("Server started: " + server.getLocalPort());
 while (true)
 { DirThread dd = new DirThread(server.accept()); }
 }
 catch(IOException ioe)
 { System.err.println("Error: " + ioe); }
 }
}

Our next class will be DirThread which will extend Thread. The basic outline for the class is dictated

by the specifications of our protocol is as follows:

import java.util.*;
import java.io.*;
import java.net.*;

public class DirThread extends Thread
{ private ObjectOutputStream out = null;
 private DataInputStream in = null;
 private Socket sock = null;
 private boolean running = false;
 private File currentPath = new File(System.getProperty("user.dir"));
 public DirThread(Socket _sock)
 { /* Sets up input and output stream and starts the thread. */ }
 public void run()
 { /* Processes input commands and parameters as long as running
 is true, catching any exceptions that might occur. If an
 exception occurs, disconnects the client by calling hangup */ }
 private void send(File list[]) throws IOException
 { /* Sends the array of File list through the ObjectOutputStream */ }
 private void send(String msg) throws IOException
 { /* Sends the String msg through the ObjectOutputStream */ }
 private void changeDirectory(String newDir) throws IOException
 { /* If newDir equals "..", makes the parent of currentPath
 the new currentPath if possible. Otherwise checks if newDir
 is a valid directory and sets currentPath to newDir. Then it
 sends currentDir as a String */ }
 private void authenticate()
 { /* Reads password. If it matches DirServer.PASSWD sends "okay",
 otherwise sends "error" and disconnects */ }
 private void hangup()
 { /* Closes all open streams and sockets and sets running to
 false */ }
 private void processCommand(String cmd, String option)
 throws IOException
 { /* determines which of the above methods to call, depending on
 the value of cmd */ }
}

Now let's implement the methods as outlined. First, here is the constructor, which is

straightforward:

public DirThread(Socket _sock)
{ System.out.println("Starting directory connection ...");
 sock = _sock;
 try
 { in = new DataInputStream(sock.getInputStream());
 out = new ObjectOutputStream(sock.getOutputStream());
 running = true;
 start();
 }

Java by Definition Chapter 9: Networking Page 40 of 78

Bert G. Wachsmuth DRAFT April 2009

 catch(IOException ioe)
 { System.err.println("Error setting up streams: " + ioe); }
}

Next comes the run method, which is started by the constructor calling start. It first calls

authenticate to check for a valid password. If the password checks out, the main loop of the run

method starts. It reads two strings from the input stream and passes them along to processCommand

to decide what to do:

public void run()
{ authenticate();
 while (running)
 { try
 { processCommand(in.readUTF(), in.readUTF()); }
 catch(IOException ioe)
 { hangup(); }
 }
}

The two send methods send an array of File and a String, respectively, through the

ObjectOutputStream, followed by a call to flush to ensure that the data is really sent.

private void send(File list[]) throws IOException
{ out.writeObject(list); out.flush(); }
private void send(String msg) throws IOException
{ out.writeUTF(msg); out.flush(); }

The next method, changeDirectory, receives as input the parameter newDir. It tries to reset the

current directory either to its parent or to the input variable newDir. When it is finished, it sends the

value of currentPath.

private void changeDirectory(String newDir) throws IOException
{ if ((newDir.equals("..")) &&
 (currentPath.getParentFile() != null))
 currentPath = currentPath.getParentFile();
 else
 { File newPath = new File(newDir);
 if (newPath.exists() && newPath.isDirectory())
 currentPath = newPath;
 }
 send(currentPath.toString());
}

The authenticate method reads two strings from the input stream. The first must be the "pass"

command and the second must be the correct version – password combination. If the password is

correct, it sends "okay". Otherwise it sends "false" and calls hangup to terminate the connection.

private void authenticate()
{ try
 { String cmd = in.readUTF();
 String passwd = in.readUTF();
 if (passwd.equals(DirServer.VERSION + "|" + DirServer.PASSWD))
 send("okay");
 else
 { send("error");
 hangup();
 }
 }
 catch(IOException ioe)

Java by Definition Chapter 9: Networking Page 41 of 78

Bert G. Wachsmuth DRAFT April 2009

 { hangup(); }
}

The hangup method closes all streams and the open socket if possible and sets running to false to

terminate the run loop of the thread.

private void hangup()
{ try
 { System.out.println("Hanging up");
 in.close(); out.close(); sock.close();
 }
 catch(IOException ioe)
 { System.err.println("Error disconnecting: " + ioe); }
 finally
 { running = false; }
}

The final method to implement is processCommand. It simply checks the value of cmd and chooses the

correct method to handle the command.

private void processCommand(String cmd, String option) throws IOException
{ if (cmd.equals("pwd"))
 send(currentPath.toString());
 else if (cmd.equals("chdir"))
 changeDirectory(option);
 else if (cmd.equals("list"))
 send(currentPath.listFiles());
 else
 hangup();
}

That's our server class. It should compile and when executed it would wait for a client that speaks

the correct protocol. But as it turns out there is a subtle problem with our server that we would

discover later when testing the server with our client applet. The problem is that our server thread

sends an array of File objects as the contents of the current directory. That works in principle, but if

the client tries to execute any of the methods of the File class such as isDirectory, the client, not

the server, will at that time try to determine whether a particular path is a directory. Since applets

are not allowed to inquire such things, a security exception will be thrown. Therefore our server

needs to send a list of objects that already include all information about the files that the client

might be interested in.39 Therefore we create a FileInfo class that stores all relevant information

about a File in fields. If objects of that type are transferred to the client the client can inquire about

the values of the fields without causing invalid calls to the file system of the applet. The class needs

to implement Serializable so that it can be transferred through an ObjectOutputStream:

import java.io.*;

public class FileInfo implements Serializable
{ private String shortName;
 private String fullName;
 private long size;
 private boolean isDir;
 public FileInfo(File file)
 { shortName = file.getName();

39
 There is an additional problem when sending objects of type File. The representation of the path leading to the

file will be determined at the time the toString method is called, which will be in the client. Therefore, the client

will use the particular representation of a path specific to its operating system. If the server runs on another

operating system, the path representation might be different, causing problems.

Java by Definition Chapter 9: Networking Page 42 of 78

Bert G. Wachsmuth DRAFT April 2009

 fullName = file.toString();
 size = file.length();
 isDir = file.isDirectory();
 }
 public String getName()
 { return shortName; }
 public String toString()
 { return fullName; }
 public long length()
 { return size; }
 public boolean isDirectory()
 { return isDir; }
}

Finally we need to change the send method in DirServer so that it first constructs appropriate

FileInfo objects and then transfers an array of those objects instead of an array of File. In other

words, we need to change private void send(File list[]) as follows:

private void send(File list[]) throws IOException
{ FileInfo info[] = new FileInfo[list.length];
 for (int i = 0; i < list.length; i++)
 info[i] = new FileInfo(list[i]);
 out.writeObject(info); out.flush();
}

That is also a change in our protocol, so we should be sure to modify it as follows:

• If the server receives the "list" command with an arbitrary parameter it will not send an

array of type File[] consisting of the contents of the current directory, as originally

specified. Instead it will construct an array of FileInfo objects, one per File in the current

directory, and send that array instead.

�

The server classes will compile and the DirServer can be started. It will wait for a connection from

an appropriate client, which we will tackle next.

Example 10.3.6

In example 9.2.13 we created a standalone program to list the contents of a given

directory. In example 10.3.5 we created a server class that can service multiple clients

and understand commands such as pwd, chdir, and list. Create a client applet that uses

the server created in example 10.3.5 to list files and directories on the server system. The

user should be able to move up and down the directory structure of the server, listing the

contents of each directory as well as a brief summary of each directory. The host to be

used should be transferred into the applet via an appropriate PARAM tag in the HTML

document. Make sure to test your client/server package extensively, in particular by

moving the server to an appropriate web server, which must be the same machine

containing the client applet.40

40
 You should be aware that this particular server may compromise the security of the entire web server system since

it allows basically anyone to view the contents of all directories. We do ask the user to enter a password, to be sure,

but that mechanism is much less secure than standard security mechanisms of a web server. You should therefore

remove our directory server from the web server system after testing it.

Java by Definition Chapter 9: Networking Page 43 of 78

Bert G. Wachsmuth DRAFT April 2009

At this stage we do not need to know exactly how the server works. All we need is the exact protocol

that the server follows so that we can create our client accordingly. Let's review the protocol from

example 10.3.5 briefly:

• The server accepts commands consisting of exactly two strings, commands and parameters.

Commands must be "pwd", "chdir", "list", or "pass", parameters as necessary for the

command. Anything else will close the connection.

• The "pwd" command with arbitrary parameter causes server to send the current directory as

a string.

• The "chdir" command with parameter ".." causes server to switch to the parent of the

current directory, or to the directory specified by the parameter if different from "..". It will

send the new current directory as a string.

• If the server receives the "list" command with an arbitrary parameter will construct an

array of FileInfo objects and send that array.

• The first command the server expects is the "pass" command. Server will check whether the

parameter is equal to a preset password. If so it will send the string "okay", otherwise it will

send the string "error" and disconnect.

Next let's get the layout of our applet out of the way. We will use the PanelBox class introduced in

example 9.6.1 to enhance the layout of our class, so we need PanelBox in the same directory as the

client applet listed next:

import java.io.*;
import java.net.*;
import java.awt.*;
import java.awt.event.*;
import java.applet.Applet;
import java.text.DecimalFormat;

public class DirClientApplet extends Applet implements ActionListener
{ private Socket connection = null;
 private DataOutputStream out = null;
 private ObjectInputStream in = null;
 private List dirList = new List();
 private List fileList = new List();
 private TextField passwd = new TextField(10);
 private Label status = new Label("Click 'Connect' ...");
 private Button connect = new Button("Connect");
 private Button disconnect = new Button("Disconnect");
 private boolean connected = false;
 private DecimalFormat formatTool = new DecimalFormat("#,###");41
 private String host = "localhost";
 public void init()
 { if (getParameter("host") != null)
 host = getParameter("host");
 Panel buttons = new Panel(new FlowLayout());
 buttons.add(new Label("Password: ")); buttons.add(passwd);
 buttons.add(connect); buttons.add(disconnect);
 passwd.setEchoChar('*');
 Panel lists = new Panel(new BorderLayout());
 lists.add("North", new PanelBox(dirList, "Directories"));
 lists.add("Center", new PanelBox(fileList, "Files"));
 setLayout(new BorderLayout());
 add("North", new PanelBox(status, "Status"));
 add("Center", lists);
 add("South", buttons);

41
 See section 1.5 for a review on formatting decimals.

Java by Definition Chapter 9: Networking Page 44 of 78

Bert G. Wachsmuth DRAFT April 2009

 connect.addActionListener(this);
 disconnect.addActionListener(this);
 dirList.addActionListener(this);
 }
 private void send(String cmd, String option) throws IOException
 { /* sends cmd and option to the server */ }
 private void connect()
 { /* connects to the server, sets up appropriate streams, and sends
 authentication information */ }
 private void showDirectory(String cmd, String path)
 { /* sends the list command to the server, receives the array of
 FileInfo object and add them to the appropriate lists. Also
 computes the number of directories, files, and the total number
 of bytes in the directory to put into the status line */ }
 public void stop()
 { /* sends bye to the server to disconnect, closes all streams and
 sockets, and clears the file and directory list */ }
 public void actionPerformed(ActionEvent ae)
 { /* reacts appropriately to clicks on the connect and disconnect
 buttons as well as to double-clicks on items in the directory
 list. */ }
 }
}

Now we need to implement the methods according to these specifications. The first is send, which is

completely easy:

private void send(String cmd, String option) throws IOException
{ out.writeUTF(cmd); out.writeUTF(option); out.flush(); }

Next there is the connect method. It needs to establish the connection to the server, setup

appropriate input and output stream through the socket, and send the password. The password will

be constructed by concatenating the string "dirserver 1.0|" with whatever the user entered into

the passwd field of the applet. If the server responds with "okay" the password was correct, the

connection is established, and we call showDirectory with command "pwd" and an arbitrary

parameter as input to get a listing of the current directory.

private void connect()
{ try
 { connection = new Socket(host, 8765);
 out = new DataOutputStream(connection.getOutputStream());
 in = new ObjectInputStream(connection.getInputStream());
 send("pass", "dirserver 1.0|" + passwd.getText());
 if (in.readUTF().equals("okay"))
 { status.setText("Authenticating ... connected");
 connected = true;
 showDirectory("pwd", "dummy");
 }
 else
 status.setText("Authenticating ... REFUSED");
 }
 catch(Exception ex)
 { status.setText("Error: " + ex); }
}

The next method is showDirectory. It requires two input parameters. The first one should be either

"pwd" or "chdir", while the second one should indicate the directory to list, if necessary. After sending

the command to the server and receiving the current directory, the method sends the list command

and receives an array of Object types from the server that can be typecast into an array of FileInfo

Java by Definition Chapter 9: Networking Page 45 of 78

Bert G. Wachsmuth DRAFT April 2009

objects. Then the method loops through the available FileInfo objects, adding them to the file or

directory list as appropriate and computes the summary information for this directory. Before adding

any data to the directory list it adds the string ".." so that the user can always double-click on that

entry to view the parent directory of the current one.

private void showDirectory(String cmd, String path)
{ try
 { send(cmd, path);
 path = in.readUTF();
 send("list", "dummy");
 FileInfo list[] = (FileInfo[])in.readObject();
 dirList.removeAll(); fileList.removeAll(); dirList.add("..");
 long total = 0, nDirs = 0, nFiles = 0;
 for (int i = 0; i < list.length; i++)
 { if (list[i].isDirectory())
 { nDirs++;
 dirList.add(list[i].toString());
 }
 else
 { nFiles++;
 total += list[i].length();
 fileList.add(list[i].toString());
 }
 }
 status.setText(path+ ", "+ nDirs+ " dirs, "+ nFiles+" files, "+
 formatTool.format(total)+ " bytes]");
 }
 catch(Exception ex)
 { status.setText("Error: " + ex); }
}

Then there is the stop method. Because we chose this particular method header, the stop method is

automatically called when the user leaves the page containing our applet. That seems appropriate

because if the user does not look at our applet the client should terminate the connection to the

server. Other than that the method is straighforward.

public void stop()
{ if (connected)
 { try
 { send("bye", "dummy");
 dirList.removeAll(); fileList.removeAll();
 in.close(); out.close(); connection.close();
 }
 catch(IOException ioe)
 { System.err.println("Error: " + ioe); }
 finally
 { connected = false; passwd.setText("");
 status.setText("Disconnected. Click 'Connect' ...");
 }
 }
}

Finally there is actionPerformed. It will call on connect and stop if the appropriate buttons are

clicked. It will also handle a double-click on items in the directory list. In that case it calls on the

showDirectory method using the currently selected entry from the directory list as parameter to get

a listing of the selected directory.

public void actionPerformed(ActionEvent ae)
{ if ((!connected) && (ae.getSource() == connect))
 connect();

Java by Definition Chapter 9: Networking Page 46 of 78

Bert G. Wachsmuth DRAFT April 2009

 else if (connected && (ae.getSource() == disconnect))
 stop();
 else if (connected && (ae.getSource() == dirList))
 showDirectory("chdir", dirList.getSelectedItem());
}

Now we are done and we can view the fruits of our labor. Figure 10.3.3 shows how an applet can now

view the contents of an entire web server, even though the standard security restrictions would not

allow it to do so directly.

Figure 10.3.3: DirClientApplet showing a directory listing by using a DirServer

�

Online Ordering Synchronized Client/Server System

As our final client/server solution aside from the extensive chat client/server system in section 10.4

we will finish the online ordering system that we started in example 9.6.1. That example will

illustrate how to add a synchronization feature to a server handling multiple clients simultaneously

to make sure that concurrent access to a resources such as a file will not destroy the integrity of that

resource.

Recall that we created an applet in example 9.6.1 that reads a "catalog" from a data file, lets the user

browse through the catalog and choose items to order. When done, the user was supposed to be able

to submit their order electronically, but because of the security restrictions imposed on applets we

had to postpone that last part of the puzzle. Now we have all the tools necessary to complete that

program.

Example 10.3.7:

Java by Definition Chapter 9: Networking Page 47 of 78

Bert G. Wachsmuth DRAFT April 2009

In example 9.6.1 we created a (reasonably) professional looking Catalog applet that

could read a data file representing items in a catalog, allowed the user to browse through

the catalog, and let the user put together an order. The user could try to submit their

order, but the actual submission process was not implemented. Now we want to finish

that example so that the user can submit an order. To do that, create a server program

that receives the order from the Catalog applet and appends it to a data file on disk.

Note that you need to be careful not to corrupt the order data file, especially since

multiple clients may attempt to submit orders simultaneously.

First, let's review the classes that made up the original Catalog applet so that we can decide what

exactly needs to be done to finish it:

CatalogItem.java

Class to represent an individual catalog item
CatalogAdmin.java

Simple class to create a sample catalog data file
CatalogOrder.java

Class to contain the necessary information representing "an order"
CatalogImage.java

Utility class to store an image from the catalog
PanelBox.java

Utility class to put borders around components in a GUI program or applet
Catalog.java

The main applet
CatalogSubmission.java

The dialog where the user can review their order, enter their mailing and billing

information, and submit the actual order

We can ignore the classes CatalogImage and PanelBox completely, since they will not have an impact

on the server we need to create. Also, the actual applet Catalog hopefully delegates its work to other

classes so that we should focus on the CatalogItem, CatalogOrder, and CatalogSubmission classes.

Let's review these classes in detail:

import java.io.*;

public class CatalogItem
 implements Serializable
{ private String ID;
 private String shortName;
 private String longName;
 protected String imageName;
 protected double price;
 public CatalogItem(String _ID)
 public void setName(String _shortName,
 String _longName)
 public String getName()
 public String toString()
}

import java.util.*;
import java.io.*;

public class CatalogOrder
 implements Serializable
{ private String name = null;
 private String credit = null;
 private String address = null;
 private LinkedList list =
 new LinkedList();
 private double totalCost = 0.0;
 public void setInfo(String _name,
 String _credit,
 String _address)
 public boolean isComplete()
 public void add(CatalogItem item)
 public String toString()
}

The important thing to realize is that both classes implement the Serializable interface so they are

prime candidates to be written to an object stream. In fact, the CatalogOrder class contains a list of

CatalogItems that the user wishes to order, as well as mailing and billing information, so it is the

primary object that we need to transfer. It remains to find out where to add the code that will

Java by Definition Chapter 9: Networking Page 48 of 78

Bert G. Wachsmuth DRAFT April 2009

eventually write the object to an object stream. If we review the CatalogSubmission class that

questions is easily answered:

import java.awt.*;
import java.awt.event.*;

public class CatalogSubmission extends Frame implements ActionListener
{ private Catalog owner = null;
 private TextField name = new TextField();
 private TextArea address = new TextArea(3,20);
 private TextField credit = new TextField();
 private TextArea orders = new TextArea(6,30);
 private CatalogOrder theBill = null;
 private Button submit = new Button("Submit Order");
 private Button cancel = new Button("Cancel Order");
 private Label status = new Label("Enter personal and mailing info");
 public CatalogSubmission(Catalog _owner, CatalogOrder _theBill)
 public void actionPerformed(ActionEvent ae)
 { if (ae.getSource() == cancel)
 owner.closeSubmission();
 else if (ae.getSource() == submit)
 { theBill.setInfo(name.getText(), credit.getText(),
 address.getText());
 if (theBill.isComplete())
 status.setText("NOT SUBMITTED: feature not implemented.");
 else
 status.setText("NOT SUBMITTED: incomplete information.");
 }
 }
}

If the user clicks on the submit button, an error message is generated instead of actually submitting

the order to a server. Therefore, we need to modify the actionPerfomed method in the

CatalogSubmission class to call a method that will transfer our ordering data. Our strategy will be

as follows:

• we modify the actionPerformed method of the CatalogSubmission class to call on the new

method submitOrder instead of displaying the text feature not implemented

• the submitOrder method will connect to a specific port on the host where the applet

originated, establish an ObjectOutputStream and attempt to transfer the entire

CatalogOrder object through that stream

• we will create a server program that listens on the specified port, receive the CatalogOrder

object, and append it to a text file

The first step is easy: we modify the actionPerformed method of CatalogSubmission as follows

(with the modified code in bold and italics):

public void actionPerformed(ActionEvent ae)
{ if (ae.getSource() == cancel)
 owner.closeSubmission();
 else if (ae.getSource() == submit)
 { theBill.setInfo(name.getText(), credit.getText(),
 address.getText());
 if (theBill.isComplete())
 submitOrder();
 else
 status.setText("NOT SUBMITTED: incomplete information.");
 }
}

Java by Definition Chapter 9: Networking Page 49 of 78

Bert G. Wachsmuth DRAFT April 2009

Before implementing the other two steps, however, we need to carefully agree on the port to be used

and - more importantly - on the protocol we want to use. We arbitrarily pick port 5678 as our

"submission port", and we define our protocol as follows:

• the server will listen on port 5678 for an incoming connection

• after connecting, server and client will establish an object stream through their sockets

• the client will send the string "JBDOrderClient"

• the server will receive that string and reply with the string "JBDOrderServer"

• the client will send the version number 1.0 as a double

• the server will receive that double and reply with the double 1.0

• the client will send the complete CatalogOrder object

• the server will receive an object and type-cast it as CatalogOrder

• client and server will close their connection and the server will append the proper

information to a plain text file for later processing.

If, at any time the responses do not follow this protocol, the connection will be closed. This protocol

will ensure, at least to some degree, that only an authorized client can submit an order to our server.

In a "real" system, this protocol should not be made public and some or all of the information should

be submitted in an encrypted form to ensure privacy. In our case, we will be content with sending the

information "as is", without worrying about proper encryption.42

Based on this protocol we add a few constants to our class, then create the submitOrder method as

follows:

import java.io.*;
import java.net.*;
import java.awt.*;
import java.awt.event.*;

public class CatalogSubmission extends Frame implements ActionListener
{ private final static String CLIENT_ID = "JBDOrderClient";
 private final static double CLIENT_VERSION = 1.0;
 private final static String SERVER_ID = "JBDOrderServer";
 private final static double SERVER_VERSION = 1.0;
 private final static String HOST = "localhost";
 private final static int PORT = 5670;
 // remaining fields as before
 public CatalogSubmission(Catalog _owner, CatalogOrder _theBill)
 { /* no change */ }
 public void actionPerformed(ActionEvent ae)
 { if (ae.getSource() == cancel)
 owner.closeSubmission();
 else if (ae.getSource() == submit)
 { theBill.setInfo(name.getText(), credit.getText(),
 address.getText());
 if (theBill.isComplete())
 submitOrder();
 else
 status.setText("NOT SUBMITTED: incomplete information.");
 }
 }
 private void submitOrder()
 { status.setText("Connecting to " + HOST);
 try

42
 Java certainly provides strong support for sending encrypted data, but it would go beyond the scope of this text to

pursue this further.

Java by Definition Chapter 9: Networking Page 50 of 78

Bert G. Wachsmuth DRAFT April 2009

 { Socket connection = new Socket(HOST, PORT);
 ObjectOutputStream out = new ObjectOutputStream(
 connection.getOutputStream());
 ObjectInputStream in = new ObjectInputStream(
 connection.getInputStream());
 out.writeUTF(CLIENT_ID); out.flush();
 if (in.readUTF().equals(SERVER_ID))
 { out.writeDouble(CLIENT_VERSION); out.flush();
 if (in.readDouble() == SERVER_VERSION)
 { status.setText("Connected. Submitting order ...");
 out.writeObject(theBill); out.flush();
 status.setText("Order submitted. Thank you.");
 }
 else
 status.setText("Invalid server version, contact Service");
 }
 else
 status.setText("Invalid server, contact Service");
 out.close(); in.close(); connection.close();
 submit.setEnabled(false);
 cancel.setLabel("Done");
 }
 catch(UnknownHostException uhe)
 { status.setText("Server " + HOST + " unknown.");}
 catch(IOException ioe)
 { status.setText("Error submitting order, please try again."); }
 }
}

The method assumes that the proper variables to identify matching clients and servers are the same

as defined in the server class. The method connects to the server, sets up object input and output

streams through the socket, sends and receives identification strings and numbers according to the

protocol, and then sends the CatalogOrder object. When everything worked, the method disables the

submit button and changes the label of the cancel button to "Done" to prevent people from

submitting an order twice.

The interesting part of the example will be the server to receive the data. Our first approach will be

to create a relatively simple, on-time server as follows:

import java.io.*;
import java.net.*;

public class JBDOrderServer
{ protected final static String CLIENT_ID = "JBDOrderClient";
 protected final static double CLIENT_VERSION = 1.0;
 protected final static String SERVER_ID = "JBDOrderServer";
 protected final static double SERVER_VERSION = 1.0;
 protected final static String HOST = "localhost";
 protected final static int PORT = 5670;
 public static void main(String args[])
 { try
 { ServerSocket server = new ServerSocket(PORT);
 System.out.println("Server started ... waiting ..");
 Socket connection = server.accept();
 System.out.println("Connection established. Identifying ...");
 ObjectInputStream in = new ObjectInputStream(
 connection.getInputStream());
 ObjectOutputStream out = new ObjectOutputStream(
 connection.getOutputStream());
 if (in.readUTF().equals(CLIENT_ID))
 { out.writeUTF(SERVER_ID); out.flush();

Java by Definition Chapter 9: Networking Page 51 of 78

Bert G. Wachsmuth DRAFT April 2009

 if (in.readDouble() == CLIENT_VERSION)
 { out.writeDouble(SERVER_VERSION); out.flush();
 try
 { CatalogOrder theBill = (CatalogOrder)in.readObject();
 System.out.println(theBill);
 }
 catch(ClassNotFoundException cnfe)
 { System.err.println("Invalid class - contact support");
 }
 }
 else
 System.out.println("Invalid version - contact support");
 }
 else
 System.out.println("Invalid client - contact support");
 out.close(); in.close(); connection.close();
 System.out.println("Connection closed.");
 server.close();
 }
 catch(IOException ioe)
 { System.err.println("Error establishing server and streams"); }
 }
}

Our server first defines the same constants as the applet to be used for identification by the server

and the client. Then it binds to the port and waits for a connection. If a connection is established, the

server tries to exchange identification information according to the protocol. Then it receives the

CatalogOrder object and - for now - prints it to the screen. Finally the server closes the connection

and exists completely.

This server already works with our client method, but it only handles exactly one connection, and it

does not save the ordering information to a text file. To improve the class, we need to solve several

problems:

Problem: The server should handle multiple client connections simultaneously:

Solution: we simply move the code that actually handles the connection to its own class,

extending Thread, as outlined in definition 10.3.4.

Problem: The server needs to save the order to a file instead of printing it to the screen:

Solution: We add a method writeOrder to the server class (not the thread class we are going

to setup) that the various threads can call upon to save the data to a file.

Problem: When several clients try to save data simultaneously, we need to make sure that

the data file does not get corrupted by uncoordinated write requests.

Solution: We mark the writeOrder method as synchronized. Other threads trying to access

writeOrder will be put on hold until the currently thread is done.

Problem: We need to find a format for the data file so that it can be imported into other

programs for easy further processing:

Solution: We add a method exportData to the CatalogData class that returns the order

data as a "tab-delimited" string. That way, the data file will consist of one line per order,

each line consisting of "fields" separated by TAB characters. Such files can be imported

directly into programs such as Microsoft Excel or Microsoft Access for further processing.

Let's implement the last solution first: we will add the following exportData method to the

CatalogOrder class:

Java by Definition Chapter 9: Networking Page 52 of 78

Bert G. Wachsmuth DRAFT April 2009

public class CatalogOrder implements Serializable
{ /* Fields as before */
 public void setInfo(String _name, String _credit, String _address)
 { /* no change, just as previously */ }
 public boolean isComplete()
 { /* no change, just as previously */ }
 public void add(CatalogItem item)
 { /* no change, just as previously */ }
 public String toString()
 { /* no change, just as previously */ }
 public String exportData()
 { String s = name + "\t" + credit + "\t";
 StringTokenizer splitter = new StringTokenizer(address,"\n");
 while (splitter.hasMoreTokens())
 s += splitter.nextToken() + "|";
 s += "\t" + list.size() + "\t" + totalCost + "\t";
 for (Iterator iterator = list.iterator(); iterator.hasNext();)
 s += "Item " + ((CatalogItem)iterator.next()).getName() + "\t";
 return s;

 }
}

Next, we will split up our JBDOrderServer class so that it can handle multiple simultaneous

connections via threads according to definition 10.3.4. The main server class would look as follows

(modeled after our final EchoServer class):

public class JBDOrderServer
{ /* static final constants as before */
 private boolean terminated = false;
 public JBDOrderServer()
 { start(); }
 public void start()
 { try
 { ServerSocket server = new ServerSocket(PORT);
 System.out.println(SERVER_ID+" "+SERVER_VERSION+" ready ...");
 while (!terminated)
 { Socket connection = server.accept();
 JBDOrderServerThread handler =
 new JBDOrderServerThread(connection);
 }
 System.out.println(SERVER_ID + " shutting down.");
 server.close();
 }
 catch(IOException ioe)
 { System.err.println("Error establishing server and streams"); }
 }
 public static void main(String args[])
 { JBDOrderServer server = new JBDOrderServer(); }
}

The thread class handling the client connection basically contains the code from the old version of

JBDOrderServer that used to handle the actual connection:

import java.io.*;
import java.net.*;

public class JBDOrderServerThread extends Thread
{ private Socket connection;
 public JBDOrderServerThread(Socket _connection)

Java by Definition Chapter 9: Networking Page 53 of 78

Bert G. Wachsmuth DRAFT April 2009

 { connection = _connection;
 start();
 }
 public void run()
 { try
 { System.out.println("Connection established. Identifying.");
 ObjectInputStream in = new ObjectInputStream(
 connection.getInputStream());
 ObjectOutputStream out = new ObjectOutputStream(
 connection.getOutputStream());
 if (in.readUTF().equals(JBDOrderServer.CLIENT_ID))
 { out.writeUTF(JBDOrderServer.SERVER_ID); out.flush();
 if (in.readDouble() == JBDOrderServer.CLIENT_VERSION)
 { out.writeDouble(JBDOrderServer.SERVER_VERSION);
 out.flush();
 try
 { CatalogOrder theBill = (CatalogOrder)in.readObject();
 System.out.println(theBill);
 }
 catch(ClassNotFoundException cnfe)
 { System.err.println("Invalid class"); }
 }
 else
 System.err.println ("Invalid version");
 }
 else
 System.err.println ("Invalid client");
 out.close(); in.close(); connection.close();
 System.out.println("Connection closed.");
 }
 catch(IOException ioe)
 { System.err.println("IOException !"); }
 }
}

That will implement the solution mentioned as the first problem above. Now we are ready to solve

the remaining problem of actually appending the data to a text file in the appropriate format. Only a

few modifications will be necessary for the JBDOrderServerThread class:

• We need to call on the JBDOrderServer class to write the data to file, so we need a

reference field to our server. We define that field in the constructor

• We need to change the line that currently prints the order to the screen so that it calls

the writeOrder method we will implement in the server class

Specifically, here is the new code, with the changes in bold and italics:

public class JBDOrderServerThread extends Thread
{ private JBDOrderServer server;
 private Socket connection;
 public JBDOrderServerThread(JBDOrderServer _server,
 Socket _connection)
 { server = _server;
 connection = _connection;
 start();
 }
 public void run()
 { /* code as before, but replacing the line that originally
 said System.out.println(theBill); with the following: */
 server.writeOrder(theBill);
 /* all other code is exactly as before */
 }

Java by Definition Chapter 9: Networking Page 54 of 78

Bert G. Wachsmuth DRAFT April 2009

}

The final modifications we need to perform involve the JBDOrderServer class:

• The class should open a character stream to an output file as soon as the server starts.

Since we want to append data to our data file, we need to make sure we open the output

stream in "append" mode.

• The class should contain a method writeOrder that takes as input a CatalogOrder and

writes the order to the output stream, formatted by the exportData method we

previously added to CatalogOrder. The method must be synchronized to prevent multiple

threads from writing to the data file simultaneously.

• When the server shuts down, the output stream needs to be closed as well.

Specifically, our final version of JBDOrderServer will look like this, with the changes marked in bold

and italics:

public class JBDOrderServer
{ /* all fields as before, plus */
 private PrintWriter out;
 public JBDOrderServer()
 { try
 { out = new PrintWriter(new FileWriter("JBDOrder.dat", true)); }
 catch (IOException ioe)
 { System.err.println("Error opening data output file(s)"); }
 start();
 }
 public synchronized void writeOrder(CatalogOrder order)
 { out.println(order.exportData());
 out.flush();
 }
 public void start()
 { try
 { ServerSocket server = new ServerSocket(PORT);
 System.out.println(SERVER_ID+" "+SERVER_VERSION+" ready ...");
 while (!terminated)
 { Socket connection = server.accept();
 JBDOrderServerThread handler =
 new JBDOrderServerThread(this, connection);
 }
 System.out.println(SERVER_ID + " shutting down.");
 server.close();
 }
 catch(IOException ioe)
 { System.err.println("Error establishing server and streams"); }
 finally
 { out.close(); }
 }
 public static void main(String args[])
 { JBDOrderServer server = new JBDOrderServer(); }
}

This will finish the code implementation part of our program. Now we need to test everything to

make sure it all works. The important thing to remember is that we added a method to an applet

that wants to establish a network connection to a server. According to the security restrictions on

applets that will only work if the server and the client are located on the same machine. We have

defined the server in the above classes as "localhost" so that we can run both the server and the

client on a local computer for testing purposes. If you move the applet to a web server, you must also

move the server to the same machine and start it on that machine. Also, don't forget to change the

Java by Definition Chapter 9: Networking Page 55 of 78

Bert G. Wachsmuth DRAFT April 2009

server name to the name of the machine where you are moving everything; otherwise the client will

not be able to connect to the server.43

For now, we will run our complete client/serve online ordering system on a local computer (i.e. you

can leave the host name as "localhost"). Make sure that all classes exist in the same directory, then

start the JBDOrderServer class via the command:

java JBDOrderServer

The server will start up, waiting for a connection. Next, open another DOS window (if you are using

Windows) and start the Catalog applet via the appletviewer (or use Netscape) on the same local

computer you started the server. Fill out a few orders to see if everything works according to plan, as

shown in figure 10.3.4.

Figure10.3.4: The JBDOrderServer has just received an Order from the Catalog applet

In figure 10.3.4 you can see that the server is running in a separate DOS box and it has received three

client connections so far. The most recent version of the order client applet is still visible, and has

just submitted an order. Next, we'll stop the server to open the data file using, for example, a

spreadsheet or any other program that can import tab-delimited data. Note that we must shutdown

the server before loading the data into another program, otherwise the operating system will not let

you open one file with two different programs.

We first close JBDOrderServer by pressing CONTROL-C while the DOS window is active. Then we open,

say, Microsoft Excel to read the data (the process of importing a tab-delimited text file into Excel

is left to the reader). The result is shown in figure 10.3.5.

43
 In order to run our JBDOrderServer on a web server machine, the Java runtime system must be installed on that

machine and you must be able to issue the appropriate command line to start the server (that usually means that you

need telnet access to the web server.

Java by Definition Chapter 9: Networking Page 56 of 78

Bert G. Wachsmuth DRAFT April 2009

Figure 10.3.5: Data from the JBDOrderServer imported to Microsoft Excel

If you have trouble opening the data file with another program such as Excel, you can try opening it

with the same text editor you are using to create your Java source code files.

To really test the client/server solution we came up with, however, we would need to move both the

server and the applet to an actual web server and test it with several people simultaneously.

Obviously we can not simulate that in this text, so we will leave it as an exercise for the reader.

Another approach to test our client/server solution would be to open multiple DOS boxes and start

the Catalog applet in each DOS box (if you are using Windows) on one machine - again, this is left as

an exercise.

�

There are still several possible improvements to our online ordering system that we could

implement. We will leave them as exercises so that we can start the final client/server example of

this chapter.

9.4. Security Issues

By now it should be clear that every server program that listens to a particular program poses a

security risk to the system hosting the server. If a port is open (i.e. a server is running that listens on

that port), then any client can connect to that port, whether they are using the appropriate protocol

or not. The client could then attempt to trick the server into performing actions that may have ill

effects on the entire system. This is especially true if the server program performs actions to write

legitimate information to disk, and even more true if the server is running as a user that has special

privileges on the system hosting the server.

Older versions of the popular SMTP sendmail program, for example, contain well-known "security

holes". That means that there is a well-known sequence of actions that a malicious client can use to

coax the sendmail server into performing tasks that will eventually give complete and unrestricted

access to the entire system hosting the server. The easiest solution to this problem was to turn off

the sendmail SMTP server, but that also meant that this particular system could no longer send or

receive any electronic mail. More recent versions of sendmail have fixed this particular security

problem, but Murphy's Law44 dictates that security issues will be a an ongoing area of concern for

any server program.

As far as the servers are concerned that we constructed in sections 10.3 and 10.4, the DirServer

from example 10.3.5 is a particular example of how you can use Java's Internet abilities to

compromise the security of an otherwise secure system. That server has two safeguards: it requires a

password before it reveals the directory structure of the server system, and it uses byte and object

streams so that a Telnet client would not be able to easily communicate with a DirServer. Even with

44
 Murphy's Law: Anything that can go wrong, will go wrong.

Java by Definition Chapter 9: Networking Page 57 of 78

Bert G. Wachsmuth DRAFT April 2009

these safeguards in place it is not advisable to run the DirServer on a production-level system for

longer periods of time.

The DirServer also illustrates that web server administrators that allow users to start Java

programs on that server are faced with the problem that users could create an insecure client/server

package and compromise the entire machine. The obvious but restrictive solution is not to allow

users to start any Java programs on the host system.45 A more measured approach would be to block

access to all ports except those where certified servers are running so that a user could not create a

server program that can successfully bind to a port. That approach, in fact, is frequently taken by

placing a web server behind a firewall, which blocks access to all but a few registered ports from

systems outside the own domain.

It is noteworthy to mention that standard http web servers - in particular the Apache web server -

that are providing the content for the World Wide Web have not yet been exposed to any major

security problems. That is particularly surprising because web servers, by their very nature, allow

any client to connect without asking for any verification such as usernames and passwords, and the

http protocol is quite complex, leaving plenty of possibilities for things to go wrong.

In the exercises you will be asked to create a "port sniffer" program that will find all open ports on a

particular server. Such a program, of course, exists already (it is not easy to come up with a useful

program that does not already exist) and is available on the Internet. Port sniffers are a frequent

starting point for "hackers" interested in breaking in to a particular system. You should be careful if

you execute such a program to look at a particular machine, since your access might be monitored

and misunderstood as an attempt to break in. Legal consequences could ensue even if you did not

mean to do any harm.

Case Study: The ChatterBox Client/Server Example

We have already seen client/server examples where multiple clients connected to a single server, and

in our JBDOrderServer class in example 10.3.7 we used a synchronized method to prevent multiple

clients to interfere with each other's actions. In the last example of this chapter we will see another

multi-client example that uses synchronization, but this time the client will also use threads. In

addition, the server will keep track of all running threads and can transfer information from one

thread to another.

Example 10.4.1:

Create a multi-user chat client/server solution. In other words, create a chat server

program that can handle multiple clients so that everything that is typed in one client is

transmitted to all other connected programs. The client should be based on a Frame and

work either stand-alone or as an applet. For those familiar with chat rooms, our example

only needs to emulate one "room", i.e. people connected to the server will see all messages

typed by anyone.

45
 This would be difficult to enforce if a web server system also allows Telnet access. After all, a user could

download the JDK to their local directory on the server and compile and run programs through that JVM. If Telnet

access was not possible, Java server programs can not be started, but the entire system may then be of limited use to

advanced users.

Java by Definition Chapter 9: Networking Page 58 of 78

Bert G. Wachsmuth DRAFT April 2009

In this example we want to create client classes so that any number of users who have loaded the

client class via their web browser can type some text at any time. That text should be transmitted to

all connected users where it is placed in an appropriate output area for reading. In addition to

creating a multi-client server - which we outlined in definition 10.3.4 - this example presents us with

three new problems:

• The server needs to keep track of all clients so that a message from one can be

transmitted to all. The server, therefore, has to be able to add and remove clients to and

from some list. Previously our multi-client server could handle clients in independent

thread, i.e. communications only had to flow from one server thread to one client. Now

communications needs to flow from any one server thread to all clients.

• The server needs to make sure that all communications happens in a synchronized

fashion. For example, if two clients attempt to simultaneously send information, the

server needs to determine who goes first and who has to wait so that the messages do not

get mixed up. Also, messages should not be sent while a client attempts to connect or

disconnect until the new status of the client can be determined.

• The client needs to be ready to receive text at any time from another client. Previously a

client only received information from one server thread, and the protocol was easy: the

client sent a string a waited for a response. Now the client needs to send strings at any

time (as requested by the user) and also be able to receive strings at any time (from any

other client)

In addition, this program could be quite useful, and we want to designed it so that it is easily

extendable. Some features that are pretty standard for chat client/server packages include:

• the ability to talk to only one user instead of the default mode of broadcasting to all users

• the ability to send URL's to clients in such a way that the underlying web browser

displays the URL sent

• the ability to organize the chat sessions in multiple rooms, i.e. only users who are in the

same chat room will share information with each other

• the ability to exclude people from chat conversations in case they broadcast offensive or

inappropriate remarks

• the ability to save a log of a chat conversation for later reference

• the possibility of placing a chat room in "auditorium" mode where only one privileged

chat user can speak without being interrupted by others

• the ability to transfer files while conducting a conversation

To be sure, these features and many more are implemented in the Internet Relay Chat service,

which allows thousands of users to communicate in hundreds of chat rooms all over the world. IRC

(Internet Relay Chat) is one of the standard services provided by many Internet hosts and there is

plenty of free software available to connect to IRC. In our case, we want to provide only a subset of

features offered by standard IRC software to get a basic understanding of the complexities involved

in this mode of communications. We will ask in the exercises to extend our basic example to include

some of the features mentioned above, but for now let's start working on the basic client/server

solution for this exercise.

As with our JBDOrderServer and EchoServer example, we need to create three classes:

• ChatterServer: The base server class. It will keep track of all client connections, add and

remove clients to a list of current clients, and ensure that all communications happens in a

synchronized fashion.

• ChatterThread: A class extending Thread to handle communications with a particular client.

It will receive strings from one client and forward them to the ChatterServer class for

Java by Definition Chapter 9: Networking Page 59 of 78

Bert G. Wachsmuth DRAFT April 2009

distribution to other clients. It will also provide a method that can in turn be used by the

ChatterServer to send strings to the attached client.

• ChatterBox: The client class with which the user interacts and that connects to a

ChatterThread. It needs an appealing interface, including an area for the user to enter new

strings, a display area to read strings received from the attached ChatterThread, and a List

to show the names of currently attached users.

As usual, before we can begin implementing these classes, we need to specify exactly what protocol

our clients and servers must follow to understand each other.

The ChatterBox Protocol

We will divide the protocol into two pieces: the first one is how exactly to establish a connection, and

the second one is what commands client and server will understand.

To establish a successful connection:

• All information transferred is text-based 46

• Server waits for a client to connect

• Client connects to server and sends the string "Chatterbox"

• Server receives the string and responds with "ChatterServer"

• Client receives the string and sends a string representing the name of the chat user. Each

client must have a unique username, i.e. no two clients can use the same name

• Server receives the string and checks if that user name already exists. If not, the new client

connection is accepted. Otherwise, the server sends a "term" command with an appropriate

message (see next)

If this protocol is not adhered to, the connection is terminated. If everything is in order, the new

connection is added to the current list of valid connections. The information exchange after the

initial identification is defined as follows:

• All information transferred is text-based

• All strings transmitted to the client after a successful connection is established consist of two

pieces: the first piece is a four-letter command, followed by a colon, then a string

representing a parameter or option for the particular command.

• The commands sent by the server that the client understands are:
• text:message

specifies to display message in the client's output area

• term:message

tells client to terminate connection (message indicates the reason)

• list:delimited-user-list

indicates that a list of currently connected user is given in user-list (the list is

delimited by '|' characters)

• The commands sent by the client that the server are:

• addu:username

specifies to add the user who sent the command to the list of valid users
• delu:username

46
 This means that as long as we use the protocol as specified we could use a Telnet connection to participate in a

chat session with this server.

Java by Definition Chapter 9: Networking Page 60 of 78

Bert G. Wachsmuth DRAFT April 2009

specifies to delete the user who sent the command from the list of valid users
• term:username

indicates that a term command should be sent to the client who sent the command

• text:message

specifies to broadcast message to all valid users

Based on this protocol we can design the basic functionality of our classes as shown in figure 10.4.1.

boolean isValidClient(ChatterThread c)
void delClient(ChatterThread c)
void addClient(ChatterThread c
void sendUserNames()
void broadcast(ChatterThread c)
void performAction(String command,
 ChatterThread c)

ChatterServer

void connect(), close(), run()

void listUsers(String names)
void (String msg)
void a (ActionEvent ae)

void send(String cmd)

performAction
ctionPerformed

ChatterBox

boolean isValidClient()
void send(String msg),run(),close()
String getUserName()
String getMessage()
void setTerminated(boolean _term)

ChatterThread extends Thread

boolean isValidClient()
void send(String msg),run(),close()
String getUserName()
String getMessage()
void setTerminated(boolean _term)

ChatterThread extends Thread

boolean isValidClient()
void send(String msg),run(),close()
String getUserName()
String getMessage()
void setTerminated(boolean _term)

ChatterThread extends Thread

void connect(), close(), run()

void listUsers(String names)
void (String msg)
void actionPerformed(ActionEvent ae)

void send(String cmd)

performAction

ChatterBox

void connect(), close(), run()

void listUsers(String names)
void (String msg)
void actionPerformed(ActionEvent ae)

void send(String cmd)

performAction

ChatterBox

 extends Frame
implements ActionListener, Runnable

Multi-Client Server Clients

 extends Frame
implements ActionListener, Runnable

 extends Frame
implements ActionListener, Runnable

Figure 10.4.1: A representation of the ChatterBox client/server System

The ChatterBox Server Classes

This time the base class for the server will be more complicated than in examples 10.3.3, 10.3.5, and

10.3.7 because the server needs to manage a list of existing threads. The basic outline for our two

classes, as sketched in figure 10.4.1, is as follows:

ChatterServer Class ChatterThread Class
import java.io.*;
import java.net.*;
import java.util.*;
public class ChatterServer
{ protected static final String ID
 = "ChatterServer";
 protected static final String CLIENT_ID
 = "ChatterBox";
 private LinkedList users
 = new LinkedList();
 private boolean terminated = false;
 public ChatterServer(int port)
 private boolean isValidClient
 (ChatterThread client)
 private void delClient
 (ChatterThread client)
 private void addClient
 (ChatterThread client)
 private void sendUserNames()
 private void broadcast
 (ChatterThread client)
 public synchronized void performAction
 (String action,
 ChatterThread client)
 public static void main

import java.io.*;
import java.net.*;
public class ChatterThread
 extends Thread
{ private ChatterServer server;
 private Socket connection;
 private PrintWriter out;
 private BufferedReader in;
 private String user, message;
 private boolean terminated
 = false;
 public ChatterThread
 (ChatterServer _server,
 Socket _connection)
 private boolean isValidClient()
 private close();
 public void run()
 public String getUserName()
 public String getMessage()
 public void setTerminated
 (boolean _terminated)
 public void send(String msg)
}

Java by Definition Chapter 9: Networking Page 61 of 78

Bert G. Wachsmuth DRAFT April 2009

 (String args[])
}

Table 10.4.2: Outline of ChatterServer and ChatterThread classes

The ChatterServer instantiates a ServerSocket that listens to a specified port. It contains a List

of ChatterThread objects, which is initially empty. When a client connects, it starts a ChatterThread

that exchanges connection information with the client. If successful, the thread stores the user name,

asks the ChatterServer to add itself to the list of valid clients, and enters its run loop. The run loop

waits for incoming strings and processes them by separating the incoming string into a command

and a parameter piece. The command piece is passed to the ChatterServer for processing, the option

is stored in a message string in the thread. The server acts on the command, calling one of the

methods addClient, delClient, or broadcast. To communicate with a client, the ChatterServer can

use the thread's send message. If the server receives a term command, it forwards it to the

appropriate thread that in turn sends it to the attached client. Also, the server calls its delClient

method to remove the client from the list of valid clients.

All action of the threads is channeled through the performAction method of ChatterServer. Hence,

if we mark that method as synchronized, we can ensure that messages sent by the various threads

can not interfere with each other. As soon as one thread uses the synchronized performAction

method, all other threads are put on hold until the method has performed its intended action.

ChatterServer(int port)
boolean isValidClient(ChatterThread c)
void delClient(ChatterThread c)
void addClient(ChatterThread c
void sendUserNames()
void broadcast(ChatterThread c)
void performAction(String command, ChatterThread c)
static void main(String args[])

ChatterServer

final String ID = “ChatterServer”;
LinkedList users = new LinkedList();
boolean terminated = true;

Figure 10.4.3: A representation of the ChatterServer class

So, now that we have established the basic functionality of our classes, we need to implement them.

Let's start with the ChatterServer.47

The constructor instantiates a ServerSocket and basically enters an infinite loop, waiting for a

connection. If a client connects, it starts a new instance of a ChatterThread but without adding it to

the list of valid clients. After all, the client may be invalid, attempting to use a name that is already

connected to the server:

public ChatterServer(int port)
{ ChatterThread cbt = null;
 try
 { ServerSocket server = new ServerSocket(port);
 System.out.println("ChatterBox Server started, waiting ...");
 while (!terminated)
 cbt = new ChatterThread(this, server.accept());
 }
 catch(IOException ioe)

47
 Note that all methods but performAction and main are marked private and performAction is marked

synchronized. That way we can ensure that client threads will access the various methods of the ChatterServer

one client at a time, because all access must be routed though a synchronized method.

Java by Definition Chapter 9: Networking Page 62 of 78

Bert G. Wachsmuth DRAFT April 2009

 { System.err.println("Unexpected Error: " + ioe); }
}

The method isValidClient is provided so that a thread can use it to check other threads already

added to the list for a duplicate user name. If the username of the input thread is unique the method

returns true otherwise it returns false:

private boolean isValidClient(ChatterThread client)
{ for (Iterator iterator=users.iterator(); iterator.hasNext();)
 { ChatterThread current = (ChatterThread)iterator.next();
 if (current.getUserName().equals(client.getUserName()))
 return false;
 }
 return true;
}

The next methods are simple: delClient removes the input client from the list of valid clients,

informs the input client that it should terminated the thread's run method, and sends the user

names to all remaining clients to inform them of a different user list. The addClient method checks

whether the client is valid via isValidClient, adds the client to the list if it is valid, and sends the

new user list. If the client is invalid (i.e. has a duplicate user name) then addClient sends a term

command with an appropriate message to the client.

private void delClient(ChatterThread client)
{ users.remove(client);
 client.setTerminated(true);
 sendUserNames();
}
private void addClient(ChatterThread client)
{ if (isValidClient(client))
 { users.add(client);
 sendUserNames();
 }
 else
 client.send("term:Duplicate User Name - use other name");
}

The sendUserNames method iterates through the list of valid clients and constructs a string of user

names delimited by the '|' character. After collecting all names, it again iterates through all clients

to send them the new user list48:

private void sendUserNames()
{ String names = "";
 for (Iterator iter = users.iterator(); iter.hasNext();)
 names += ((ChatterThread)iter.next()).getUserName() + "|";
 for (Iterator iter = users.iterator(); iter.hasNext();)
 ((ChatterThread)iter.next()).send("list:" + names);
}

Our second to last method broadcast iterates through the list of clients, gets the message string

stored in the input client thread, and sends that message to all other clients. It prefaces the message

by the user name of the input client so that the other clients can tell who sent the message:

private void broadcast(ChatterThread client)

48
 This method could be improved by modifying addClient and delClient so that those methods ensure that the

string representing the user list is always current, which would save one iteration through the list. For now this

version will be sufficient (but not efficient).

Java by Definition Chapter 9: Networking Page 63 of 78

Bert G. Wachsmuth DRAFT April 2009

{ String msg = client.getUserName() + "=> " + client.getMessage();
 for (Iterator iter = users.iterator(); iter.hasNext();)
 ((ChatterThread)iter.next()).send("text:" + msg);
}

Finally there is the performAction method. That method is somewhat similar to the

actionPerformed method of GUI-based programs. For those programs, action events are generated

by various GUI elements such as buttons and the events are passed to the actionPerformed method

for processing. In our program the "events" are generated by the various client threads and are

routed through the performAction method for processing. If we mark this method as synchronized

we will ensure that one thread will be able to finish its action before another thread is allowed access

to performAction. Thus we can ensure the integrity of our client list as well as make sure that

messages sent to the various clients can not interfere with each other. Other that this simple trick,

the method is easy:

public synchronized void performAction(String cmd, ChatterThread client)
{ if (cmd.equals("addu"))
 addClient(client);
 else if (cmd.equals("delu"))
 delClient(client);
 else if (cmd.equals("text"))
 broadcast(client);
 else if (cmd.equals("term"))
 { client.send("term:Connection terminated - good bye");
 delClient(client);
 }
}

And of course there is the obligatory main method which instantiates a ChatterServer, taking the

port to be used from the command line (make sure to enter an integer, preferably above 1024, when

starting the program).

public static void main(String args[])
{ ChatterServer cbs = new ChatterServer(Integer.parseInt(args[0])); }

The ChatterServer contains the methods that actually do the "work" of our server. Communication

with the individual clients, however, is handled by ChatterThread objects.

ChatterThread(ChatterServer _server, Socket _connection)
boolean isValidClient()
void run(), close()
String getUserName()

send(String msg),

String getMessage()
void setTerminated(boolean _term)

ChatterThread extends Thread
ChatterServer server;
Socket connection;
PrintWriter out; BufferedReader in;
boolean terminated;
String user, message;

Figure 10.4.4: A representation of the ChatterThread class

These classes extend Thread and therefore run independently of each other, but since they call on

the synchronized performAction method of ChatterServer they act in a synchronized fashion. The

idea of ChatterThread is easy, consisting basically of four major methods:

Java by Definition Chapter 9: Networking Page 64 of 78

Bert G. Wachsmuth DRAFT April 2009

• constructor: initializes some variables and uses isValidClient to check whether the

client is indeed a proper ChatterBox client (if so, it starts the thread)

• isValidClient: checks whether the client is valid by exchanging "handshake" messages

according to our protocol

• run: listens for an incoming string, separates it into command and option part, and

passes the command part to performAction of ChatterServer

• send: sends the input string to the attached client

We have already outlined the class in table 10.4.2 and figure 10.4.4 so we can start implementing the

various methods. The constructor will define certain variables, then call on isValidClient to

determine whether the client that connected to the server is the right type. If so, it sends an "addu"

command to the server class to add this thread to the list, then it starts the thread:

public ChatterThread(ChatterServer _server, Socket _connection)
{ System.out.println("Starting connection thread ...");
 server = _server;
 connection = _connection;
 if (isValidClient())
 { server.performAction("addu", this);
 start();
 }
 else
 System.out.println("Invalid client. Connection closed.");
}

The isValidClient method defines proper character-level input and output streams through the

socket and attempts to exchange identification information according to the connection protocol.

Recall that the client will send an ID string, the server - i.e. our thread - checks whether that string

is "ChatterBox", the server then sends "ChatterServer" and waits for a string representing the user

name. If everything works as advertised, the method returns true, otherwise it closes all streams

and returns false. In particular, if this method returns true the proper input and output streams

are open:

private boolean isValidClient()
{ try
 { out = new PrintWriter(new OutputStreamWriter(
 connection.getOutputStream()));
 in = new BufferedReader(new InputStreamReader(
 connection.getInputStream()));
 String remoteID = in.readLine();
 if ((remoteID != null) &&
 (remoteID.equals(ChatterServer.CLIENT_ID)))
 { send(ChatterServer.ID);
 user = in.readLine();
 return true;
 }
 else
 { close();
 return false;
 }
 }
 catch(IOException ioe)
 { return false; }
}

The utility method close will close the input and output streams and the socket, and absorb any

exceptions that might be thrown in the process:

Java by Definition Chapter 9: Networking Page 65 of 78

Bert G. Wachsmuth DRAFT April 2009

private void close()
{ try
 { in.close(); out.close(); connection.close(); }
 catch(IOException ioe)
 { System.err.println("ERROR closing stream."); }
}

The run method is, actually, simple. It waits to receive a string from the input stream, then checks

whether the string is valid and has the appropriate length. If not, the method terminates, otherwise

it breaks the string into its command and option parts, stores the option information in the field

message, and calls the performAction method of the ChatterServer with the command as argument.

If an exception occurs, the method prints out an appropriate error message. Also, the method

implements the finally phrase of a try-catch statement to send a "delu" command to the server to

ensure that when the run method terminates, the client thread is removed from the list of valid

clients. Note that if the client properly sends a term command, it should already be removed from the

list via the call to server.performAction, and the additional call to server.performAction in

finalize should have no effect. But clients may also disconnect involuntarily, so adding a call to

server.performAction("delu") will ensure that the client will be removed from the list of valid

clients no matter how it terminates.

public void run()
{ System.out.println("ChatterThread run method starts");
 try
 { while (!terminated)
 { String line = in.readLine();
 if ((line == null) || (line.length() < 5))
 terminated = true;
 else
 { message = line.substring(5,line.length());
 server.performAction(line.substring(0,4), this);
 }
 }
 }
 catch(IOException ioe)
 { System.err.println("IO Exception in run. Terminating ..."); }
 finally
 { server.performAction("delu", this);
 System.out.println("ChatterThread run done");
 }
}

The remaining methods are simple:

• getUserName returns whatever string is currently in message,

• getUserName returns the user name set in the isValidClient method

• send transfers the input string through the output stream and flushes the stream to ensure

that the data is actually sent and not kept in the stream's buffer

• setTerminated changes the field terminated which, when set to true, will cause the thread

to finish its run method

public String getUserName()
{ return user; }
public String getMessage()
{ return message; }
public void setTerminated(boolean _terminated)
{ terminated = _terminated; }
public void send(String msg)
{ out.println(msg); out.flush(); }

Java by Definition Chapter 9: Networking Page 66 of 78

Bert G. Wachsmuth DRAFT April 2009

At this stage, we could already test our server, using telnet as the client program. After all, our

server uses an entirely text-based protocol, and telnet can handle text-based server connections

perfectly fine.

First, we need to start our server by typing (e.g. in a DOS box under Windows):

java ChatterServer 1234

(or some equivalent unused port). Next, we open a telnet connection to the localhost on port 1234.

Once the connection is established, we need to type "ChatterBox", then a user name to connect

properly (each line terminated by hitting ENTER). After that we can send strings to the server for

broadcasting by typing, for example, "term:This line will be sent.". To close the connection, we

would type "term:me". Below is a screen shot of two telnet connections to our ChatterServer.49

Figure 10.4.5: Two Telnet clients connected to a ChatterServer

While this certainly works it is not a very intuitive way to chat. Therefore, we need to create a client

program that will use GUI elements to hide the complexities of our protocol from the user.

The ChatterBox Client Class

The idea for the client class derives immediately from the way we have setup the server protocol as

well as from our need for a graphical user interface:

• The class needs to extend either Applet or Frame to provide a convenient GUI interface. We

will choose a Frame and a stand-alone program so that our ChatterBox client can connect to

servers on any machine.50

49
 Note that we have turned "local echo on" in the "Terminal | Preferences" menu of our Telnet clients so that

you can see what has been typed a well as what the server sent. Otherwise we would not see what is typed in a

Telnet window but it will be sent to the server nonetheless when pressing ENTER.
50
 Applets can only connect to the machine they came from because of the applet security restrictions.

Java by Definition Chapter 9: Networking Page 67 of 78

Bert G. Wachsmuth DRAFT April 2009

• The class needs text-based input and output streams through a socket that is connected to a
ChatterThread

• The class needs a method to send outgoing text to the server, or more precisely to an

attached ChatterThread object

• The class needs to be able to receive incoming text at any time from the attached

ChatterThread object so it will implement Runnable and use a Thread to listen to incoming

text

• The class needs to interpret the incoming text and act accordingly

As far as the GUI elements are concerned, we will use TextField for the user name and the outgoing

text, a TextArea to display incoming text, a List for the names of all attached users, buttons to issue

"send text" and "connect/leave" commands, and a Label to display status messages. We also use an

inner class WindowCloser to close the frame.

ChatterBox(String _host, int _port)
void setup(), void connect(), void close(), void run()

void listUsers(String names)
void performAction(String msg)
void actionPerformed(ActionEvent ae)
void main(String a[])

void send(String cmd),

ChatterBox extends Frame
implements ActionListener, Runnable

//
 TextField input, user; Button send, connect;
 List users; TextArea output; Label status;
//
 Socket connection; PrintWriter out, BufferedReader in;
 Thread thread; boolean terminated; String name;
 String host; int port
//
 private class WindowCloser extends WindowAdapter

GUI Fields:

Client Fields:

Inner class:

Figure 10.4.6: A representation of the ChatterBox class

The remaining fields (Socket, Thread, streams, etc) should be clear, so here is the outline of the

class:

import java.io.*;
import java.net.*;
import java.awt.*;
import java.awt.event.*;
import java.util.StringTokenizer;

public class ChatterBox extends Frame implements Runnable, ActionListener
{ private final static String ID = "ChatterBox";
 private final static String SERVER_ID = "ChatterServer";
 // GUI fields
 private TextField input = new TextField(), user = new TextField();
 private Button send =new Button("Send"),connect =new Button("Connect");
 private List users = new List();
 private TextArea output = new TextArea();
 private Label status = new Label();
 private class WindowCloser extends WindowAdapter { }
 // functional fields to communicate
 private Socket connection = null;
 private PrintWriter out = null;
 private BufferedReader in = null;
 private Thread thread = null;
 private boolean terminated = true;
 private String name, host;
 private int port;

Java by Definition Chapter 9: Networking Page 68 of 78

Bert G. Wachsmuth DRAFT April 2009

 // constructor and methods
 public ChatterBox(String _host, int _port)
 private void setup()
 private void connect()
 private void send(String cmd)
 private void close()
 private void listUsers(String names)
 public void run()
 public synchronized void performAction(String msg)
 public void actionPerformed(ActionEvent ae)
 public static void main(String a[])
}

Note that the performAction method is synchronized. After all, the class contains an independently

executing thread that can receive text at any time and pass it to that method for processing. Marking

it as synchronized will prevent potential coordination problems. Also, we import a variety of classes,

including the StringTokenizer class. We will need that class in the listUsers method to break

apart the delimited string of user names.

Let's start implementing the various methods, starting with the constructor. Actually, the

constructor simply delegates its work to the setup method:

public ChatterBox(String _host, int _port)
{ super(ID);
 host = _host;
 port = _port;
 setup();
}

The setup method will layout the various GUI components, using our previously defined PanelBox to

give the program a more appealing look51:

private void setup()
{ Panel inputPanel = new Panel();
 inputPanel.setLayout(new BorderLayout());
 inputPanel.add("Center", input); inputPanel.add("East", send);
 Panel statusPanel = new Panel();
 statusPanel.setLayout(new BorderLayout());
 statusPanel.add("Center", new PanelBox(status, "Status"));
 statusPanel.add("East", new PanelBox(connect,"Action"));
 Panel userPanel = new Panel();
 userPanel.setLayout(new BorderLayout());
 userPanel.add("North", new PanelBox(user, "Your name"));
 userPanel.add("Center", new PanelBox(users, "User list"));
 setLayout(new BorderLayout());
 add("South", new PanelBox(inputPanel, "Input"));
 add("Center", new PanelBox(output, "Output"));
 add("East", userPanel);
 add("North", statusPanel);
 send.addActionListener(this);
 connect.addActionListener(this);
 send.setEnabled(false);
 status.setText("ChatterBox version 1.0, (c) BGW");
 addWindowListener(new WindowCloser());
 validate(); pack(); setVisible(true);
}

51
 The PanelBox class is defined in example 9.6.1 and puts a 3D-border with a title around a component.

Java by Definition Chapter 9: Networking Page 69 of 78

Bert G. Wachsmuth DRAFT April 2009

Note that the class adds an instance of our inner class WindowCloser as a WindowListener to the

frame. The setup method will produce the look shown in figure 10.4.7:

Figure 10.4.7: Layout generated by the setup method of the ChatterBox class

Our class contains two methods that can cause action. The first is the standard actionPerformed

method that reacts to a click on the buttons. If the connect button is pressed the method checks the

label of the button and calls connect or sends a term command, respectively. The connect button,

therefore, serves a dual purpose: if currently not connected it allows the user to connect; if currently

connected it allows the user to disconnect:

public void actionPerformed(ActionEvent ae)
{ Object src = ae.getSource();
 if ((src == connect) && (connect.getLabel().equals("Connect")))
 connect();
 else if ((src == connect) && (connect.getLabel().equals("Leave")))
 send("term:" + name);
 else if ((src == send) && (!input.getText().equals("")))
 send("text");
}

The actionPerformed method does not need to be marked as synchronized because a user can not

press two GUI elements simultaneously, so action events are generated one at a time.

The second method that causes action reacts to the input received from the thread. It might be

possible that the thread receives message in quick succession without giving the performAction

method a chance to finish its work before receiving a new line. Therefore, the message is marked as

synchronized. It first checks if the input string is sufficiently long to be a valid string according to

our protocol (if not, it terminates the thread receiving new messages). Then it interprets the

commands:

• if input string contains a term command: the method sets terminated to true, which will

terminate the thread receiving new message and shows an appropriate status message

• if input string contains a list command: the method calls the listUser method to show the

user names received in the second "option" part of the input string

• if input string contains a text command: the method appends the second part of the input

string to the output area:

Java by Definition Chapter 9: Networking Page 70 of 78

Bert G. Wachsmuth DRAFT April 2009

public synchronized void performAction(String msg)
{ if ((msg == null) || (msg.length() < 5))
 terminated = true;
 else if (msg.startsWith("term"))
 { terminated = true;
 status.setText(ID + ": " + msg.substring(5,msg.length()));
 }
 else if (msg.startsWith("list"))
 listUsers(msg.substring(5,msg.length()));
 else if (msg.startsWith("text"))
 output.append(msg.substring(5,msg.length()) + "\n");
}

This method can easily be expanded to understand additional commands if the protocol was modified

to allow for more possibilities (see exercises).

What remains is to implement the various utility methods called upon by the above "action"

methods. Let's start with the connect method. It first checks if a user name has been entered in the

appropriate text field. If so, it establishes input and output streams, sends the client ID, waits for

and checks the server ID and sends the user name, all according to the connection protocol. If all

goes well, the method starts the run method of the thread receiving incoming messages, changes the

label of the connect button, activates the send button, and puts the cursor in the input field for the

user's convenience:

private void connect()
{ if (!user.getText().equals(""))
 { try
 { connection = new Socket(host, port);
 out = new PrintWriter(new OutputStreamWriter(
 connection.getOutputStream()));
 in = new BufferedReader(new InputStreamReader(
 connection.getInputStream()));
 out.println(ID); out.flush();
 if (in.readLine().equals(SERVER_ID))
 { name = user.getText();
 out.println(name); out.flush();
 terminated = false;
 thread = new Thread(this);
 thread.start();
 send.setEnabled(true);
 connect.setLabel("Leave");
 input.requestFocus();
 }
 else
 close();
 }
 catch(UnknownHostException uhe)
 { status.setText(ID + ": Host unknown"); }
 catch(IOException ioe)
 { status.setText(ID + ": Connection refused or no server "); }
 }
 else
 status.setText(ID + ": Please enter your user name first ...");
}

The send method pushes the string contained in the input field (if any) through the output stream

and resets the input field for further input:

private void send(String cmd)
{ out.println(cmd + ":" + input.getText()); out.flush();

Java by Definition Chapter 9: Networking Page 71 of 78

Bert G. Wachsmuth DRAFT April 2009

 input.setText("");
 input.requestFocus();
}

The run method, attached to the thread started in the connect method, displays information about

the status of the connection and enters its main loop. In the loop it waits for text coming in through

the input stream and passes any information to the performAction method for processing. The

method needs a standard try-catch block, but also uses a finalize part to ensure that all streams

are properly closed when the run method terminates:

public void run()
{ status.setText(ID+": ["+name+"] connected - type text click SEND");
 try
 { while (!terminated)
 performAction(in.readLine());
 }
 catch(IOException ioe)
 { status.setText(ID + ": unknown exception in run method !"); }
 finally
 { close(); }
}

When the loop of the run method is over, the finalize clause calls close to properly terminate the

connection. That means closing all open streams, erasing the user list, clearing the output area,

disabling the send button, and changing the label of the connect button to "Connect":

private void close()
{ send.setEnabled(false); connect.setLabel("Connect");
 users.removeAll(); output.setText("");
 try
 { in.close(); out.close(); connection.close();}
 catch(IOException ioe)
 { System.err.println("Unexpected error closing connection."); }
}

The last utility method implement is listUsers. That method is called by performAction and

receives a string of user names terminated by '|' as input. It uses a StringTokenizer to separate the

names and adds each name to the user list:

private void listUsers(String names)
{ users.removeAll();
 StringTokenizer tokens = new StringTokenizer(names, "|");
 while (tokens.hasMoreTokens())
 users.add(tokens.nextToken());
}

Of course we need to implement the standard main method to set the whole program in motion. As

expected, that method simply instantiates a ChatterBox object, using command line parameters for

the host name and the port to use:

public static void main(String a[])
{ ChatterBox c = new ChatterBox(a[0], Integer.parseInt(a[1])); }

Actually, we are not quite done. We defined an inner class WindowCloser as a field and we are using

an instance of that class as a WindowListener for our frame. We still need to implement that class,

though. Therefore, we replace the "empty" implementation private class WindowCloser extends

WindowAdapter { } used in the above layout of our class by the "real" version as follows:

Java by Definition Chapter 9: Networking Page 72 of 78

Bert G. Wachsmuth DRAFT April 2009

private class WindowCloser extends WindowAdapter
{ public void windowClosing(WindowEvent we)
 { if (!terminated)
 send("term:" + name);
 System.exit(0);
 }
}

The method implements the windowClosing method to react to a click on the window's close box. If

the thread is currently active, terminated is false and the class is connected to a ChatterThread.

The method sends a term command to the server to disconnect, then exits the program. Otherwise,

the method does not need to send anything to the server and can quit right away.

Now it's time to play around with our ChatterBox client/server system to see if everything works as

advertised. Try starting two active ChatterBox frames, as well as a Telnet connection to the

ChatterServer, all "talking" to each other. For initial testing purposes, all classes should run on one

computer, using the host name localhost and the (arbitrary) port 9007, but you should also test

your system by moving the server to a system different from the client. See figure 10.4.8 for a screen

shot of the ChatterBox system in action.

The ChatterBox Client as an Applet

The ChatterBox system should work pretty well and since the client is a stand-alone program it can

connect to a server regardless of the host running the server. However, it would also be nice to have

an applet version of our client. The obvious advantage is that we can enhance any web page with an

interactive chat program without asking the user to install any special programs. The clear

disadvantage is that because of the applet security restrictions a ChatterBox applet can only connect

to a ChatterServer if both classes are located on the same web server. But then, if we had both an

applet and a stand-alone version, we would have the best of both worlds. Fortunately, with a few

simple modifications our existing ChatterBox class can be made to start from an Applet as well as

from the command line, and hence the same class can be used for either purpose.

Example 10.4.2:

Create a ChatterBoxlet class that extends Applet and starts an instance of a

ChatterBox. If any modifications are necessary in the existing ChatterBox class, make

sure that the class will function perfectly as a stand-alone program as well as an applet.

Test the entire ChatterBox system by placing the server and the applet classes on a web

server, start the server on that machine, and connect to it via a ChatterBoxlet applet, a

ChatterBox stand-alone program, as well as via Telnet.

The idea of converting a stand-alone program extending Frame to an applet in such a way that the

same class can serve both purposes is straight-forward:

• create a "starter" class extending Applet that contains (at least) one button

• if the user clicks on that button, an instance of the Frame class is instantiated

This approach works, but there are usually two problems with easy solutions:

• if a user clicks multiple times on the applet button, you need to make sure that only one

instance of the frame is instantiated

• frames generally quit by calling System.exit, while applets are not allowed to call that

method

Java by Definition Chapter 9: Networking Page 73 of 78

Bert G. Wachsmuth DRAFT April 2009

The general solution is to pass an instance of the starter applet to the frame. The frame will then be

able to tell whether it was started from an applet, in which case it should not call on System.exit, or

in stand-alone mode. Also, the frame can notify the applet when it is done, so that the applet will

know exactly when an instance is active and can avoid activating a second one.

To see how it works, we will proceed in stages. Here is our first, simplistic attempt to start a

ChatterBox from an applet:

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

public class ChatterBoxlet extends Applet implements ActionListener
{ private Button start = new Button("Start ChatterBox");

 public void init()
 { setLayout(new FlowLayout());
 add(start);
 start.addActionListener(this);
 }
 public void actionPerformed(ActionEvent ae)
 { if (ae.getSource() == start)
 { ChatterBox chat = new ChatterBox("localhost", 1234); }
 }
}

After creating the appropriate HTML code:

<HTML>
<APPLET CODE="ChatterBoxlet.class" WIDTH="200" HEIGHT="50">
</APPLET>
</HTML>

we can indeed start a ChatterBox frame from a web browser or the appletviewer. But, as we said,

we can not close the frame because its call to System.exit generates a security exception. We can

also instantiate multiple instances of the class, which we do not want in this case.

Therefore, we will adjust our applet so that it knows whether a ChatterBox is active or not by adding

a field of type ChatterBox as well as an exit method to properly close an existing ChatterBox if one

is active. The actionPerformed method needs to change so that it only instantiates a new

Chatterbox is none is currently active, otherwise it will activate the current one. We also add the

capability to read the host and the port from appropriate PARAM tags of the HTML document. The

new code is in bold and italics:

public class ChatterBoxlet extends Applet implements ActionListener
{ private Button start = new Button("Start ChatterBox");
 private ChatterBox chat = null;
 private String host = "localhost";
 private int port = 1234;
 public void init()
 { setLayout(new FlowLayout());
 add(start);
 start.addActionListener(this);
 if (getParameter("host") != null)
 host = getParameter("host");
 if (getParameter("port") != null)
 port = Integer.parseInt(getParameter("port"));

Java by Definition Chapter 9: Networking Page 74 of 78

Bert G. Wachsmuth DRAFT April 2009

 }
 public void actionPerformed(ActionEvent ae)
 { if (ae.getSource() == start)
 { if (chat == null)
 chat = new ChatterBox("localhost", 1234);
 else
 { chat.setState(Frame.NORMAL);
 chat.setVisible(true);
 chat.toFront();
 }
 }
 }
 public void exit()
 { if (chat != null)
 { chat.setVisible(false);
 chat.dispose();
 chat = null;
 }
 }
}

This will compile perfectly, but in order for the ChatterBox to use the exit method of the

ChatterBoxlet it needs an appropriate reference to that class. Therefore, we again need to modify

ChatterBoxlet, and we also need to make some small modifications to the original ChatterBox class

(as usual, the new code is in bold and italics):

• The change to ChatterBoxlet is minimal - we just add the reference this to the

constructor of a new ChatterBox object:

public class ChatterBoxlet extends Applet implements ActionListener
{ /* Fields as before */
 public void init()
 { /* no changes */ }
 public void actionPerformed(ActionEvent ae)
 { if (ae.getSource() == start)
 { if (chat == null)
 chat = new ChatterBox("localhost", 1234, this);
 else
 chat.toFront();
 }
 }
 public void exit()
 { /* no changes */ }
}

• In the ChatterBox class there are three changes: first, we need to ad an extra field of

type ChatterBoxlet; second, we need a second (overloaded) constructor that matches our

new way of instantiation; and finally we need to adjust the inner class WindowCloser to

make proper use of its new possibilities:

public class ChatterBox extends Frame
 implements Runnable, ActionListener
{ /* all fields as before, plus one additional field */
 private ChatterBoxlet applet = null;
 /* the inner class needs to be modified as follows */
 private class WindowCloser extends WindowAdapter
 { public void windowClosing(WindowEvent we)
 { if (!terminated)
 send("term:" + name);
 if (applet == null)

Java by Definition Chapter 9: Networking Page 75 of 78

Bert G. Wachsmuth DRAFT April 2009

 System.exit(0);
 else
 applet.exit();
 }
 }

 public ChatterBox(String _host, int _port)
 { /* no changes to this constructor */ }
 public ChatterBox(String _host, int _port, ChatterBoxlet _applet)
 { super(ID);
 host = _host;
 port = _port;
 applet = _applet;
 setup();
 }
 /* remaining code is unchanged */
}

The important change is in the inner class WindowCloser: if applet is null, the class must have been

instantiated as a stand-alone program, hence the System.exit method is appropriate. If applet is

not null, it must have been instantiated by an applet. Therefore the class calls the applet's exit

method to let the applet close the frame and set its own reference to the frame back to null. Now

another instance of ChatterBox can be started if the start button is clicked again.

This will - finally - create a dual-purpose stand-alone/applet combination:

• you can start a ChatterBox from the command line

• you can start a ChatterBox using the ChatterBoxlet applet

Now we finally have a dual-purpose system, and we can use PARAM tags in the HTML document to pass

the proper host and port into the applet which will forward the information to the ChatterBox:

<HTML>
<APPLET CODE="ChatterBoxlet.class" WIDTH="200" HEIGHT="50">
 <PARAM NAME="host" VALUE="chat.host.edu">
 <PARAM NAME="port" VALUE="4567">
</APPLET>
</HTML>

Of course, the standard security restrictions for applets are still in place, so that the only host that

the applet will be able to connect to is the same one from which the applet originates. However, our

entire client/server ChatterBox system is now flexible enough to be installed on any web server

without adjusting and recompiling any code.

Figure 10.4.8 shows a screen shot of one ChatterBox started from an applet, one started from the

command line, and a Telnet client, all connected to one ChatterServer running on the local

computer:

Java by Definition Chapter 9: Networking Page 76 of 78

Bert G. Wachsmuth DRAFT April 2009

Figure 10.4.8: ChatterBox and Telnet clients connected to a ChatterServer

Chapter Summary

Java by Definition Chapter 9: Networking Page 77 of 78

Bert G. Wachsmuth DRAFT April 2009

Java by Definition Chapter 9: Networking Page 78 of 78

Bert G. Wachsmuth DRAFT April 2009

