
Java by Definition Chapter 7: Sequential Data Structures Page 1 of 112

Bert G. Wachsmuth DRAFT April 2009

Chapter 7: Sequential Data Structures

We have so far explored the basic features of the Java language, including an overview of object-

oriented features, threads, exceptions, and we created a variety of programs and applets using the

AWT as well as Swing. In this and the next chapter we will focus instead on traditional

programming structures that can be implemented in any of the common programming languages

and that are used in most medium to large programming project. Rather than focusing on language

constructs specific to Java, we will learn how to use Java to implement constructions that are defined

in a more abstract way and can be created using any other programming language as well. Most of

these new concepts can be explained and implemented without resorting to programs with a

graphical user interface, but time permitting we will provide several complete applications that will

illustrate the usefulness of our new idea.

This chapter is organized XXX

Quick View

Here is a quick overview of the topics covered in this chapter.

(*) These sections are optional but recommended

Here is a quick overview of the topics covered in this chapter.

(*) 7.1. Recursion
Single Recursion; Some Useful Recursive Methods; Multiple Recursion;

The Cost of Recursion

(*) 7.2. The Tower of Hanoi Applet

(*) 7.3. Searching and Sorting
Simple Search; Binary Search; Selection Sort; Bubble Sort; Insertion Sort;

Quick Sort; Sorting Algorithms Compared

7.4. Java's Build-in Searching and Sorting Algorithms
Searching and Sorting Basic Data Types; Searching and Sorting Objects

(*) 8.1. Sequential Data Structures
Lists; Queues; Stacks

(**) 8.2. A Mathematical Expression Parser
The Tokenizer; Converting to Postfix; Postfix Evaluation

8.3. Java Build-in Sequential Structures
The Java List Framework; StringTokenizer Class; Iterators

Java by Definition Chapter 7: Sequential Data Structures Page 2 of 112

Bert G. Wachsmuth DRAFT April 2009

(*) These sections are optional but recommended

(**) These sections are optional

7.1. Searching and Sorting

An area where recursive methods can provide seemingly easy solutions to fairly complex questions is

the area of searching and sorting. Indeed, there are many algorithms to solve "searching and sorting"

problems, and many research papers have been written on this subject. In this chapter we will by no

means cover the breadth of available search and sort techniques. Instead, we will introduce some of

the more frequently used algorithms only. This section will lay a foundation for understanding the

build-in Java search and sort mechanisms that will be introduced in section 7.3.

Search Algorithms

The general setup for a "searching" problem is simple: Given a list of N items, determine if one

particular item is part of the list. Occasionally you may also want to know the location of the

searched item if it is contained in the list. For this chapter, a "list" will be represented by an array

and the items we will be looking for will be doubles. With a few changes other data types, including

general objects, can also be searched, which will be covered in the exercises.

The easiest search follows exactly our own intuition. Suppose we are given the numbers

1, 19, 8, 7, 15, and 21

and we want to know whether 15 is included in that list. We seem to be able to answer "yes" almost

immediately, without thinking about it. But, consider the following 50 random numbers between 0

and 10:

9.22, 9.38, 9.12, 7.79, 7.37, 0.87, 9.23, 5.30, 5.46, 9.16

1.80, 4.22, 6.17, 3.90, 3.80, 2.01, 8.87, 4.84, 3.06, 5.00

9.80, 5.13, 1.58, 9.28, 3.74, 9.46, 3.04, 5.66, 4.81, 5.44

1.02, 4.57, 3.97, 2.78, 1.47, 7.06, 4.49, 5.83, 0.21, 4.16

3.74, 7.88, 3.50, 1.62, 2.04, 2.47, 0.08, 0.00, 9.20, 5.16

Is the number 3.54 part of that list? Now we can not immediately tell the answer. Instead, what we

do (more or less automatically) is to start looking at the first number, compare it against the one we

are looking for, continue with the next number and so forth, until we either find the number or we

reach the end of the list. Our first search algorithm uses exactly the same mechanism:

Definition 7.3.1: Simple Search

If A is an array of double, then to determine whether a number key is part of the array we

compare that key number against every member of the array, starting from the first, until we

either find a match or we reach the end of the array.

Java by Definition Chapter 7: Sequential Data Structures Page 3 of 112

Bert G. Wachsmuth DRAFT April 2009

Example 7.3.2:

Create a method that takes as input an array of double and a single double and returns

true if the second number is found in the array of doubles. Then create another method

with the same input but it returns the index where the second double is located in the

first array, or -1 if the array does not contain that number.

Based on our description of the algorithm we might want to use a while loop to go through the

members of the array until we either find a mach or reach the end of the array. However, we can

achieve the same result with a for loop, remembering that the return statement exits a method

immediately:

public static boolean search(double A[], double key)

{ for (int i = 0; i < A.length; i++)

 if (A[i] == key)

 return true;

 return false;

}

The second method is similar, but instead of returning a boolean it returns the appropriate integer:

public static int searchIndex(double A[], double key)

{ for (int i = 0; i < A.length; i++)

 if (A[i] == key)

 return i;

 return -1;

}

These methods will certainly work nicely, but we can also come up with an interesting alternative

solution.

Example 7.3.3:

Redo the above method search so that it returns true if the key is found, but throws an

ItemNotFound exception if it does not find the key.

First, we need to create the ItemNotFoundException. Recall that creating your own exception is

accomplished by extending the default Exception class and providing it with two appropriate

constructors (see definition 5.1.11 creating your own exceptions):

public class ItemNotFoundException extends Exception

{ public ItemNotFoundException()

 { super("Item not found"); }

 public ItemNotFoundException(String msg)

 { super("Item not found: " + msg); }

}

Now we can modify either of the above methods so that they throws an instance of this exception if

the item has not been found. For example:

public static boolean search(double A[], double key)

 throws ItemNotFoundException

{ for (int i = 0; i < A.length; i++)

 if (A[i] == key)

 return true;

Java by Definition Chapter 7: Sequential Data Structures Page 4 of 112

Bert G. Wachsmuth DRAFT April 2009

 throw new ItemNotFoundException();

}

This has the (possible) advantage that you can now use this modified search method without having

to use if statements to test whether you found an item. You can simply assume that you have found

it in the try part of the block, while handling the case where you do not find the item in the catch

block. Here is an easy example on how to use this method (don't forget to create the

ItemNotFoundException first):

public class TestSearch

{ public static boolean search(double A[], double key)

 throws ItemNotFoundException

 { /* as before, no changes */ }

 public static void main (String args[])

 { double A[] = {1,2,3,4,5,6,7,8,9,10};

 try

 { System.out.println(search(A, 3.0));

 System.out.println(search(A, -3.0));

 }

 catch(ItemNotFoundException ie)

 { System.out.println(ie);

 }

 }

}

Of course, the disadvantage now is that you must use a try-catch block to use this new exception.

Figure 7.3.1 shows the result of running this class.

Figure 7.3.1: Result of TestSearch program

A more detailed discussion of the benefits of either approach is left as an exercise.

[xxx remove paragraph] While this approach certainly works, it is somewhat simple minded. There

are other alternatives, and one in particular, which is reasonably simple to implement yet performs

orders of magnitude faster when applicable.

[xxx end remove]

The worst case scenario for any search to be conducted is if you are searching for an item that is not

present. For our current algorithm, this means that every item of the entire array has to be looked at

before we can be certain that our item is not contained in the array. There is another type of search

that is much quicker, i.e. you do not have to look at all elements in an array before being able to

determine that your search item is not present.

Definition 7.3.4: Binary Search

Binary Search is a search algorithm that applies to arrays that are sorted. For simplicity, we will

assume that the array is sorted in ascending order, i.e. starting with the smallest element.

Java by Definition Chapter 7: Sequential Data Structures Page 5 of 112

Bert G. Wachsmuth DRAFT April 2009

To search for a key element, we start with the element in the middle of the sorted array, and

determine if key is equal to, less than, or bigger than the middle element. If it is equal, the search

is over. If key is less than that, you can discard every element above the current one. If the key is

larger than that, you can discard everything below the current element. Therefore, you can split

the array in half, discarding either the top or bottom half. Then you repeat the procedure on this

new "half array" until you either find key in the array, or you can no longer determine a middle

element.

This definition probably sounds much more complicated that it really is. Let's consider a simple

example:

Example 7.3.5:

Suppose you have the sorted array A = {-1, 1, 3, 5, 6, 7, 9, 10, 12, 20, 25} and you want to

search for, say, 50, then for, say, -10, and finally for 6. Illustrate in each case how the

binary search algorithm works.

Suppose we are searching the array A for 50. First, we start with the element in the middle, in our

case the number 7. The key 50 is bigger than that number. Since our array is sorted that means that

50 can only be in the "upper half" of the array, i.e. between the number 7 and the last one. Therefore,

we discard the lower half of the array and we continue our search with the (sub) array {9, 10, 12, 20,

25}. This time the middle number is 12. The key we are looking for (50) is again larger than 12, so we

again discard the lower half of that array. We will therefore continue searching the array {20, 25}.

This time, there is no middle number, so we pick either one of these numbers, say 20. The key 50 is

again bigger, so we discard the lower half and continue searching the array {25}. This number is not

equal to our key, but we can also not split this single number up again. Therefore, our search is over

and we have determined that 50 is not part of the original array.

Now let's search the array A for -10. We pick the middle number 7, compare against our key -10. The

key is less than the middle element, so we discard everything bigger than 7 and continue searching

the array {-1, 1, 3, 5, 6 }. Picking the middle number 3 and comparing against our key -10 again

results in our discarding the upper half of that array and continue our search in {-1, 1}. We pick

either one of these numbers as the middle one, say -1. Comparing against our key results in

discarding once again the upper half, to continue our search with {-1}. But that number is not equal

to our key, and we can not split that "array" any further - therefore -10 is not part of our array.

Finally, let's search the array A for 6. Picking the middle number 7 and comparing against our key

results in discarding the upper half of the array to continue the search in {-1, 1, 3, 5, 6}. Picking the

middle number 3 and comparing against the key (6) will now result in our discarding the lower half

of that array and continuing the search in {5, 6}. Picking either one, say 5, and comparing against 6

means to continue the search with the array {6}. That, indeed, is equal to our key, so that we have

determined that 6 is part of the original array.

Example 7.3.6:

Assuming that the array A is an array of double numbers that is sorted in ascending

order, create a method that will search this array using the binary search algorithm.

At first glance this might seem quite tricky. How can we "discard" parts of an array? Isn't it going to

be tricky to determine which part of the array to discard?

Java by Definition Chapter 7: Sequential Data Structures Page 6 of 112

Bert G. Wachsmuth DRAFT April 2009

First, we need to determine our method header. We obviously need an array and a double number as

input. In addition, we do not always want to consider the whole array but a subarray of the original

one. Therefore, we use two additional parameters indicating the starting and ending index of the

subarray to be considered:

public static boolean binarySearch(double A[], double key,

 int start, int end)

{ /* applies binary search algorithm to search for key in A between

 start and end. */ }

Our algorithm asks for finding the middle element. Therefore, we need to compute

int mid = (start + end) / 2;

to see if we have found key at that index position, i.e. (A[mid] == key). If so we would be done.

Otherwise, if (A[mid] < key) we need to search the subarray from index position mid+1 to end, and if

(A[mid] > key) we continue our search from start to mid-1. And in fact we already know how to

"continue searching": we use the same method we are trying to define for that. The last condition to

implement would be to decide when we can no longer "split" the interval in half (and the search

would have failed). That is the case as soon as (start > end), and would, in fact, be our "base case"

for a recursion. Therefore, we will define our recursive method as follows:

public static boolean binarySearch(double A[], double key,

 int start, int end)

{ int mid = (start + end) / 2;

 if (start > end)

 return false;

 else if (A[mid] == key)

 return true;

 else if (A[mid] < key)

 return binarySearch(A, key, mid + 1, end);

 else

 return binarySearch(A, key, start, mid-1);

}

Our binarySearch method1 requires two additional input parameters start and end that are

necessary for the recursion but may be confusing to the user. That is no reason to discard our method

because we can simply hide it making it private and setting up a convenient public "front-end"

method:

public static boolean search(double A[], double key)

{ return binarySearch(A, key, 0, A.length-1); }

private static boolean binarySearch(double A[], double key,

 int start, int end)

{ /* as before */ }

As stated before, recursive methods may be expensive in terms of memory requirements, so we might

want to create a non-recursive version of binarySearch (using the same method header as the

search method above to make life simple for the user):

public static boolean search(double A[], double key)

{ int start = 0;

 int end = A.length - 1;

1
 This is not a double recursive method even though there are two recursive calls in the method body. But in any

given situation only one of those two calls will execute, hence this method is a single recursion.

Java by Definition Chapter 7: Sequential Data Structures Page 7 of 112

Bert G. Wachsmuth DRAFT April 2009

 while (start <= end)

 { int mid = (start + end) / 2;

 if (A[mid] == key)

 return true;

 else if (A[mid] < key)

 start = mid + 1;

 else

 end = mid-1;

 }

 return false;

}

In the appendix we will analyze exactly how much faster the binary search algorithm is over the

standard one. For now we will focus on extending our search algorithm(s) to include searching for

other types. In our current discussion on searching we have only searched arrays of doubles. That

was particularly convenient since double numbers readily compare via the standard comparison

operators. That does not mean that only numbers can be searched.

In fact, in examples 4 and 6, section 3.6, we created Sorter classes to sort arrays of any type. We will

create an analogous "general purpose" Searcher class that can search arrays of any type as long as

the type implements a Searchable interface.

Example 7.3.7:

Create a general-purpose Searcher class that can search arrays of any type, using either

the simple search or binary search algorithm. In addition, instead of simply returning

true or false, the search algorithm should return a reference to the found object if

available, or throw an ItemNotFound exception if it can not find the item.

To do this example, you should review the Sorter class we discussed in examples 4 and 6, section

3.6, as well as example 7.3.3 where we throw a custom made exception when an item is not found.

In any case, the simple search algorithm relies on the fact that we can check whether two entities

are equal, while the binary search algorithm also requires us to be able to determine which of two

entities is "bigger". Therefore, only items that can be compared in this way can be searched with

these algorithms and our first task is to ensure that our items indeed can be compared properly.

Therefore, we create a Searchable interface that specifies three (abstract) methods as follows:

public interface Searchable

2

{ public abstract boolean isEqualTo(Searchable obj);

 public abstract boolean isLessThan(Searchable obj);

 public abstract boolean isGreaterThan(Searchable obj);

}

Next, we create the ItemNotFound exception according to definition 5.1.11:

public class ItemNotFoundException extends Exception

{ public ItemNotFoundException()

 { super("Item not found"); }

 public ItemNotFoundException(String msg)

 { super("Item not found: " + msg); }

}

2
 As we will see in section 7.4, the build-in Java search methods use an interface Comparator that requires objects

to implement public int compare(Object o1, Object o2). That method returns –1, 0, or 1, depending on

whether o1 is less than, equal to, or bigger than o2.

Java by Definition Chapter 7: Sequential Data Structures Page 8 of 112

Bert G. Wachsmuth DRAFT April 2009

Now we can create the Searcher class that searches an array of Searchable objects for a key that is

also of type Searchable. The actual algorithm is much like it was before, but instead of returning

true if an item is found it returns a reference to the object found and instead of returning false if

the item is not found we throw an ItemNotFound exception. To make our class user friendly, we

create one overloaded public search method, so that one version uses the simple search algorithm,

and the second one uses binary search. It is left to the user to ensure that the array is properly

sorted before using binary search.

public class Searcher

{ // constants

 public static final int SIMPLE = 1;

 public static final int BINARY = 2;

 // public methods

 public Object search(Searchable A[], Searchable key)

 throws ItemNotFoundException

 { for (int i = 0; i < A.length; i++)

 if (A[i].isEqualTo(key))

 return A[i];

 throw new ItemNotFoundException();

 }

 public Object search(Searchable A[], Searchable key, int method)

 throws ItemNotFoundException

 { if (method == SIMPLE)

 return search(A, key);

 else

 return binarySearch(A, key, 0, A.length-1);

 }

 // private methods

 private static Object binarySearch(Searchable A[], Searchable key,

 int start, int end) throws ItemNotFoundException

 { int mid = (start + end) / 2;

 if (start > end)

 throw new ItemNotFoundException();

 else if (A[mid].isEqualTo(key))

 return A[mid];

 else if (A[mid].isLessThan(key))

 return binarySearch(A, key, mid + 1, end);

 else

 return binarySearch(A, key, start, mid-1);

 }

}

Now, of course, we should check whether the above Searcher class really works.

Example 7.3.8:

Create an Address class that stores and displays the first and last name of an address as

well as an email address. It should implement the Searchable interface where two

addresses are considered equal if their first and last name matches. If they are not equal

and have different last names, the first address is considered bigger if the last name of

the first address is lexicographically bigger than that of the second. If the last names are

equal but the first names differ, we consider the first one bigger if the first name of the

first address is lexicographically bigger than the second. Create an array of these

addresses and use the Searcher class to search for a particular address.

Java by Definition Chapter 7: Sequential Data Structures Page 9 of 112

Bert G. Wachsmuth DRAFT April 2009

The Address class is completely straightforward, except that it needs to implement the Searchable

interface. That forces the class to define the methods isEqualTo, isGreaterThan, and isLessThan.3

public class Address implements Searchable

{ private String first;

 private String last;

 private String email;

 public Address()

 { first = last = email = new String(); }

 public Address(String _first, String _last, String _email)

 { first = _first;

 last = _last;

 email = _email;

 }

 public String toString()

 { return last + ", " + first + " (" + email + ")"; }

 public boolean isEqualTo(Searchable other)

 { if (!(other instanceof Address))

 return false;

 else

 return (last.equals(((Address)other).last) &&

 first.equals(((Address)other).first));

 }

 public boolean isLessThan(Searchable other)

 { if (!(other instanceof Adress))

 return false;

 else

 { String otherFirst = ((Address)other).first;

 String otherLast = ((Address)other).last;

 if (last.equals(otherLast))

 return (first.compareTo(otherFirst) < 0);

 else

 return (last.compareTo(otherLast) < 0);

 }

 }

 public boolean isGreaterThan(Searchable other)

 { if (!(other instanceof Address))

 return false;

 { String otherFirst = ((Address)other).first;

 String otherLast = ((Address)other).last;

 if (last.equals(otherLast))

 return (first.compareTo(otherFirst) > 0);

 else

 return (last.compareTo(otherLast) > 0);

 }

 }

}

Please note that in order to access the private fields in the comparison methods we need to type-cast

the objects from Searchable to Address (private fields of one Address can be accessed by other

objects that are also of type Address). However, the input type to those methods must be Searchable

because that is as dictated by the Searchable interface.

Having created all appropriate classes (exception class, Searchable interface, Searcher class, and

Address class), we are ready to test if everything really works as advertised. The test class is simple:

it instantiates the necessary objects such as a Searcher object and an array with various addresses.

3
 These methods should accept any object that implements Searchable, even if they are not of type Address.

Therefore, we must make sure that the three methods return false if used with input types other than Address.

Java by Definition Chapter 7: Sequential Data Structures Page 10 of 112

Bert G. Wachsmuth DRAFT April 2009

Then it defines two addresses, one present in the array and other not. Finally we search for either

one, displaying the result of the search if possible:

public class SearchForAddress

{ public static void main(String args[])

 { Searcher searcher = new Searcher();

 Address book[] = new Address[5];

 book[0] = new Address("Bert", "Wachsmuth", "wachsmut@shu.edu");

 book[1] = new Address("Nicole", "Wachsmuth", "");

 book[2]= new Address("Horst", "Wachsmuth", "howa@t-online.de");

 book[3] = new Address("Silke", "von der Emde","");

 book[4] = new Address("Leah", "Wachsmuth","");

 Address lookFor1 = new Address("Leah", "Wachsmuth","lives@home");

 Address lookFor2 = new Address("John", "Doe", "");

 try

 { System.out.println(searcher.search(book, lookFor1));

 System.out.println(searcher.search(book, lookFor2));

 }

 catch(ItemNotFoundException ie)

 { System.out.println(ie);

 }

 }

}

When we execute this class, the

resulting output is as shown on

the right. In particular,

"Wachsmuth, Leah" was indeed

found, even though the email

address does not match the

search key. Also, the displayed

address has no email, which is

again correct.4

Figure 7.3.2: Using general-purpose Searcher class

Now that we have seen two different search algorithms, the obvious question is which one is better.

The answer, of course, depends: if the array is not sorted, there's only one possible method – by

default, it is best. If the array is sorted, there are two candidates, simple search and binary search.

As we will analyze in the appendix, binary search is a lot more efficient than simple search.

4
 The address displayed is the one found not the one in the search key. Therefore it is important to return a reference

to the object found. It is true that this object will have at least something in common with the known key (otherwise

they would not be equal) but it might contain additional information different from key.

Java by Definition Chapter 7: Sequential Data Structures Page 11 of 112

Bert G. Wachsmuth DRAFT April 2009

Search Time vs. Array Size

Simple Binary

Figure 7.3.3: Search times versus array size for simple and binary search

Figure 7.3.3 shows an almost linear dependency of search time on array size, i.e. if the array size

doubles, the search time doubles as well.5 For binary search it seems as if the size of the array has no

impact on the search time. While that is of course not true, binary search is so fast that arrays of a

size that would matter to binary search can not be instantiated on a PC because of memory

constraints.6 A more detailed analysis of the performance of these algorithms can be found in the

appendix.

Sort Algorithms

Just as for searching the general idea of sorting is easy: we start with an array of items in no

particular order and we want to convert it into a sorted array in either ascending or descending

order. We will restrict our discussion to arrays of double numbers because they can easily be

compared using the standard comparison operators.7

Selection Sort

To determine our first sorting algorithm, consider the following 50 random numbers:

9.22, 9.38, 9.12, 7.79, 7.37, 0.87, 9.23, 5.30, 5.46, 9.16

1.80, 4.22, 6.17, 3.90, 3.80, 2.01, 8.87, 4.84, 3.06, 5.00

9.80, 5.13, 1.58, 9.28, 3.74, 9.46, 3.04, 5.66, 4.81, 5.44

1.02, 4.57, 3.97, 2.78, 1.47, 7.06, 4.49, 5.83, 0.21, 4.16

3.74, 7.88, 3.50, 1.62, 2.04, 2.47, 0.08, 0.00, 9.20, 5.16

5
 That is no surprise: since simple search looks at every element in the array, it will naturally take longer if there are

more elements in the array.
6
 The search time should really be close to zero, but there is a certain overhead involved in calling a method to

measuring the time it takes to finish. That time is shown in this chart, while the actual time to search the arrays is

negligible for binary search. In this case the largest array was an array of 1,300,000 address objects.
7
 It is simple to extend all algorithms to arrays of Object by using a suitable interface. The details are left as

exercises.

Java by Definition Chapter 7: Sequential Data Structures Page 12 of 112

Bert G. Wachsmuth DRAFT April 2009

If you were to sort them starting with the smallest number, how would you do it? The strategy you

are probably going to adopt will be similar to this:

 select the smallest of all 50 numbers, put that first and cross out that number in the

original set

 select the smallest of the remaining 49 numbers, put that second and cross out that

number in the original set

 select the smallest of the remaining 48 numbers, put that third and cross out that

number in the original set

 continue in this fashion until all numbers are sorted

That method, indeed, is the basis of our first sorting algorithm (we have implemented that algorithm

already in the Sorter class in example 4, section 3.6):

Definition 7.3.9: Selection Sort

Suppose A is an array of double numbers. To sort this array in ascending order using the

selection sort algorithm:

 Find the smallest element in the entire array A and swap it with the first element. Now the

first element is in the correct position (being the smallest one in A).

 Find the smallest element in A minus the first element, and swap it with the second element.

Now the first two elements are in the correct order.

 Find the smallest element in A minus the first two elements, and swap it with the third

element. Now the first three elements are in the correct order.

Continue in this fashion until the last element is reached. All elements in A are now in increasing

order.

This algorithm is illustrated in figure 7.3.4:

56
27
22
95
79
45
96

22

27
56
95
79
45
96

22

27
56
95
79
45
96

22

27
45
95
79
56
96

22

27
45

79

96

56

95

22

27
45
56
79

95
96

22

27
45
56
79

95
96

Figure 7.3.4: How Selection Sort works (bold numbers are in correct position)

 22 is the smallest overall number and is swapped with the first number

 27 is the smallest number starting at the second one, and swapped with itself

 45 is the smallest number starting at the third, and swapped with the third

 56 is the smallest number starting at the fourth, and swapped with the fourth

 79 is the smallest number starting at the fifth, and swapped with itself

 95 is the smallest number starting at the sixth, and swapped with itself

The last number must now be the largest, and the entire array is sorted.

Example 7.3.10:

Java by Definition Chapter 7: Sequential Data Structures Page 13 of 112

Bert G. Wachsmuth DRAFT April 2009

Implement the Selection Sort algorithm and test it on a random array of size 10 to see if

it works properly.

If we look at this algorithm we can isolate two distinct tasks:

 We need to be able to find the location of the smallest number in a part of an array.

We will use a method selectMin that takes as input an array and an integer indicating the starting

index of where in the array we want to start looking for the minimum. It will return the index of the

smallest element in the corresponding subarray.

 We need to be able to swap two elements in an array.

We will use a method swap that takes as input an array and two integers and swaps the

corresponding entries in the array.

If we can solve these tasks the rest of the selection sort algorithm can be accomplished in a simple

loop. Here is the implementation of the first method to find the location of the smallest number in an

array A, starting at a particular index start:

public static int selectMin(double A[], int start)

{ int smallest = start;

 for (int i = start+1; i < A.length; i++)

 if (A[i] < A[smallest])

 smallest = i;

 return smallest;

}

Initially, we assume that the smallest number in the entire array (lacking an alternative) is located

at start. Then we look at each number in the array from start+1 to the end of the array. If we find

a number that is smaller than smallest, then our initial idea was not correct and we reset smallest

to that index. When the method is finished, smallest will indeed contain the index of the smallest

number in the array A starting at start.

As for the method to swap two elements in an array, it is simple:

public static void swap(double A[], int pos1, int pos2)

{ double tmp = A[pos1];

 A[pos1] = A[pos2];

 A[pos2] = tmp;

}

Note, in particular, that this method returns void but does swap the respective elements of the array,

because arrays are reference objects. With these methods in place, sorting the array is quite simple:

public static void sortSelect(double A[])

{ for (int i = 0; i < A.length-1; i++)

 swap(A, i, selectMin(A, i));

}

This method performs exactly like the algorithm prescribes: it starts with i = 0, finds the smallest

element in the entire array, and swaps it with the 0th element in the array. Then it finds the smallest

element in the array starting at index 1 and swaps it with the 1st element in the array, and so on.

What is left for us to do is to test these methods to see if the process really works:

Java by Definition Chapter 7: Sequential Data Structures Page 14 of 112

Bert G. Wachsmuth DRAFT April 2009

public class SortTest

{ public static int selectMin(double A[], int start)

 { /* as above */ }

 public static void swap(double A[], int pos1, int pos2)

 { /* as above */ }

 public static void sortSelect(double A[])

 { /* as above */ }

 public static void printArray(double A[])

 { for (int i = 0; i < A.length; i++)

 System.out.println(A[i]);

 }

 public static void main(String args[])

 { double A[] = new double[10];

 for (int i = 0; i < A.length; i++)

 A[i] = Math.random()*10;

 System.out.println("Before sorting");

 printArray(A);

 sortSelect(A);

 System.out.println("After sorting");

 printArray(A);

 }

}

When you compile and run this class you will see that indeed our selection sort algorithm works as

intended.

This sorting algorithm works nicely, but if we were sorting large arrays we would notice that the

algorithm is slow. For example, in 3D game programming we might need an algorithm to draw

geometric objects so that objects in the front really appear "before" those in the back. One such

algorithm involves sorting the objects to draw by depth, then drawing from the back to the front. If

the sorting algorithm is slow, the entire drawing of the scenery will suffer. Sorting is, in fact, a quite

frequent task for a variety of data, in any kind of programming, so that we would very much like to

improve our sort algorithm, if possible.

Bubble Sort

Therefore, we will investigate a few more sorting algorithms and compare them in terms of their

speed in a later example. Our next algorithm has a nice name, but as it will turn out that's about all

that can be said in its favor.

Definition 7.3.11: Bubble Sort (Exchange Sort)

Suppose A is an array of double numbers. To sort this array in ascending order using the bubble

sort algorithm:

 Process the full array by comparing consecutive elements: if the (i+1)st element is less than

the ith element, swap them with each other, otherwise leave them alone. If no exchange is

made, the array is sorted and we are done. At the end of this pass the overall largest number

will have "bubbled" to the last position of the array.

 Repeat this "bubbling" procedure, but apply it to the current array except the last element. If

no exchange was made, the array is sorted and we are done. At the end of this pass the

second-largest number will have "bubbled" to the second-last position of the array.

Java by Definition Chapter 7: Sequential Data Structures Page 15 of 112

Bert G. Wachsmuth DRAFT April 2009

 Repeat this "bubbling" procedure, but apply it to the current array except the last two

elements. If no exchange was made, the array is sorted and we are done. At the end of this

pass the third-largest number will have "bubbled" to the third-last position of the array.

Continue in this fashion until either no exchange was necessary during a particular pass, or there

is nothing left to sort. This algorithm is also frequently called Exchange Sort.

The first pass of this algorithm is illustrated in figure 7.3.5:

56
95
27
22
79
45
96

56
95
27
22
79
45
96

56
27
95
22
79
45
96

56
27
22
95
79
45
96

56
27
22
79
95
45
96

56
27
22
79
45
95
96

56
27
22
79
45
95

96

Figure 7.3.5: How Bubble Sort works - First Pass Only (bold number is in correct position)

 95 is not less than 56, so no exchange is necessary

 27 is less than 95, so we exchange them (which means the array was not sorted)

 22 is less than 95, so we exchange them

 79 is less than 95, so we exchange them

 45 is less than 95, so we exchange them

 96 is not less than 95, so no exchange is necessary

The largest number has bubbled to the end of the array. Now we repeat this procedure, but

considering the array 56, 27, 22, 79, 45, and 95 (the number already in final position is shown in

bold):

 56 and 27 are exchanged, resulting in 27, 56, 22, 79, 45, 95, 96

 56 and 22 are exchanged, resulting in 27, 22, 56, 79, 45, 95, 96

 56 and 79 are not exchanged

 79 and 45 are exchanged, resulting in 27, 22, 56, 45, 79, 95, 96

 79 and 95 are not exchanged

Now the array is 27, 22, 56, 45, 79, 95, and 96, and the "bubbling" process starts again, considering

the array 27, 22, 56, 45, and 79 (the numbers already in final position are in bold):

 27 and 22 are exchanged, resulting in 22, 27, 56, 45, 79, 95, 96

 27 and 56 are not exchanged

 56 and 45 are exchanged, resulting in 22, 27, 45, 56, 79, 95, 96

 56 and 79 are not exchanged

Now the array is 22, 27, 45, 56, 79, 95, 96, and the last three entries are guaranteed to be in their

proper order. But, as it turns out, all other numbers have also bubbled into their correct position.

One additional pass of the bubbling process would determine that no items need to be exchanged,

indicating that the array is now sorted.

This algorithm is somewhat similar to the selection sort algorithm. However, instead of searching a

"large" portion of the array for a small element, the algorithm searches locally only. The result of one

pass is similar to one pass of selection sort: one element is guaranteed to be at the proper position.

Java by Definition Chapter 7: Sequential Data Structures Page 16 of 112

Bert G. Wachsmuth DRAFT April 2009

However, the process of bubbling moves other elements closer to their final position as a side benefit

and the hope is that fewer passes are necessary to sort the entire array.

We will later compare these algorithms in more detail. Right now, however, we should say that while

the name of this sorting mechanism is certainly catchy, and the algorithm is somewhat "cute", it

offers no significance performance improvement over selection sort for "average" arrays. To be fair, if

the array was originally sorted already, the bubble sort algorithm would detect it and finish almost

immediately, while a selection sort would stubbornly re-sort the array. For "average" arrays,

however, this procedure offers no significant benefits over a selection sort, and may, in fact, perform

worse.

But, it is of course time to implement that algorithm using the appropriate methods:

Example 7.3.12:

Implement the Bubble Sort algorithm and test it on a random array of size 10 to see if it

works properly.

As with the selection sort algorithm, we can isolate two distinct tasks:

 We need to perform the "bubbling" procedure and apply it to the array from the first

element to a given element.

Therefore, we define a method bubble that will look at all consecutive members of an array from

index 0 to index stop and exchange consecutive items if necessary. As output, this method will

return false if any exchange was performed or true otherwise, indicating whether the array is

sorted or not.

 We again need to be able to swap two elements in an array.

We will use our previous method swap so we do not have to repeat it here (see example 7.3.11).

Here is a possible bubble method, using our previously defined swap method:

public static boolean bubble(double A[], int stop)

{ boolean sorted = true;

 for (int i = 0; i < stop; i++)

 { if (A[i+1] < A[i])

 { swap(A, i, i+1);

 sorted = false;

 }

 }

 return sorted;

}

With that method defined (and doing the majority of the work), the rest is simple: the sortBubble

method needs to call bubble first on the full array, then on the array from 0 to the second-last entry,

then on the array from 0 to the third-last entry, and so forth. The procedure is done either when a

call to bubble returns true (indicating that the array is now sorted), or there is no piece left of the

array to sort. We use a while loop as follows to implement this method:

public static void sortBubble(double A[])

{ int stop = A.length-1;

 boolean sorted = false;

 while ((stop >= 0) && (!sorted))

 { sorted = bubble(A, stop);

Java by Definition Chapter 7: Sequential Data Structures Page 17 of 112

Bert G. Wachsmuth DRAFT April 2009

 stop--;

 }

}

To test this method, simply add both methods to the previous SortTest class and modify its main

method to call sortBubble instead of sortSelect. The details are left as an exercise (compare

example 7.3.18).

Insertion Sort

As we mentioned, bubble sort is different from selection sort, but it is not necessarily an

improvement. Next, we will introduce a sort algorithm that indeed is a better algorithm that search

or bubble.

Definition 7.3.13: Insertion Sort

Suppose A is an array of double numbers. To sort this array in ascending order using the

insertion sort algorithm:

 Consider the second last element in the array. If the last element is less than this one, move it

up by one and insert the second-last element in the last position.

 Consider the third-last element in the array, and the last two elements of the array. Move all

entries in that subarray that are less than the third-last element up by one, and insert the

third-last element into the resulting empty slot.

 Consider the forth-last element in the array, and the last three elements of the array. Move

all entries in that subarray that are less than the fourth-last element up by one, and insert the

fourth-last element into the resulting empty slot.

Continue in this fashion until you reach the first element of the array, which is inserted into the

appropriate spot of the subarray consisting of all elements but the first one. The array is now

sorted in ascending order.

This algorithm is illustrated in figure 7.3.6:

56
27
22
95
79
45
96

56

22
27

95
79
45

96

56
27
22
95
45
79

96

56
27
22
45

79

95
96

56
27
22
45

79

95
96

56
22
27
45

79

95
96

22

27
45

56
79

95

96
Figure 7.3.6: How Insertion Sort works

 The second-last number is 45, but the last number 96 is bigger, so no action is necessary

 The 3rd-last number is 79, the subarray to consider is [45, 96]. Since 45 is smaller than 79, it

moves up one, and 45 is inserted there, resulting in the subarray [45, 79, 96].

 The 4th-last number is 95, the subarray to consider is [45, 79, 96]. Both 45 and 79 are

smaller, so they move up one, and 95 is inserted, resulting in [45, 79, 95, 96].

 The 5th-last number is 22. It is smaller than the appropriate subarray [45, 79, 95, 96], so no

action is necessary

Java by Definition Chapter 7: Sequential Data Structures Page 18 of 112

Bert G. Wachsmuth DRAFT April 2009

 The 6th-last number is 27, the subarray to consider is [22, 45, 79, 95, 96]. Only 22 is smaller,

so it moves up, 27 is inserted, and the result is [22, 27, 45, 79, 95, 96].

 The 7th-last number is 56, the subarray to consider is [22, 27, 45, 79, 95, 96]. The numbers

22, 27, and 45 are smaller, so they move up by one, 56 is inserted, and the resulting array is

[22, 27, 45, 56, 79, 95, 96]

Since the 7th-last number is also the first, we are done, and indeed our array is now sorted.

At every step of this procedure the part of the array that is sorted is located at the tail end of the

array, and grows by one at each step. However, only at the very last step are all numbers in their

final position. That is substantially different from our previous algorithms:

 in selection sort the appropriate numbers were moved to the top of the array and were

immediately in their proper place

 in bubble sort the appropriate numbers bubbled to the bottom of the array were and

immediately in their proper place

Despite this apparent shortcoming the insertion algorithm will usually perform better than both of

our previous algorithms. In particular, if an array is already sorted correctly, no insertion and no

moves will be necessary and the algorithm will finish almost immediately. In other words, this

algorithm "detects" sorted arrays, just as the bubble algorithm does. Before we elaborate further,

here is the implementation of this algorithm:

Example 7.3.14:

Implement the Insertion Sort algorithm and test it on a random array of size 10 to see if

it works properly.

Again, we will try to identify one or more subtasks so that we can implement the appropriate utility

methods first. This time we need to be able to move elements of the array up by one and insert

another element into the resulting free position. Specifically:

 The method needs, of course, the array as input, as well as an integer start indicating

which element to look at. That integer also determines which subarray is to be used for

the insertion (from start+1 to the end of the array).

 To determine the spot where the current number is to be inserted, we use a while loop.

That loop will begin at index position j = start+1, move the jth element up into the (j-

1)st position, but only if the current number is larger than the jth element. Then j is

incremented by one. When j has reached the end of the array, or when the jth element is

no longer less than the current element, we have found the position to insert the current

element

 As a by-product of the while loop described above, all necessary elements have been

moved up by one position, so that this pass of our insertion sort algorithm is complete.

Here is the appropriate method:

public static void insert(double A[], int start)

{ double ins = A[start];

 int j = start+1;

 while ((j < A.length) && (ins > A[j]))

 { A[j-1] = A[j];

 j++;

 }

 A[j-1] = ins;

}

Java by Definition Chapter 7: Sequential Data Structures Page 19 of 112

Bert G. Wachsmuth DRAFT April 2009

Note that at the end the current number ins is inserted at A[j-1]. That is because the while loop

will indeed find the correct position to insert our number, but increment j one additional time.

Therefore, we need to inserted ins at A[j-1], not at A[j] after the while loop.

As usual, after having implemented this utility method doing all the work, the main method to finish

our implementation of the insertion sort algorithm is easy: it just calls the insert method in a loop

that goes backwards through the array, starting at the second-last position of the array. Here are the

details:

public static void sortInsert(double A[])

{ for (int i = A.length-2; i >= 0; i--)

 insert(A, i);

}

To test this implementation of our algorithm, simply add both of these methods to the previous

SortTest class, and modify its main method to call sortInsert instead of any other sort method. The

details are left as an exercise (compare example 7.3.18).

We now have three different sorting mechanisms, but none of them was recursive. Yet, we said

earlier that using recursion one can create smart methods that in a few lines of code could

accomplish close to magical results.

Quick Sort

This recursion-based new algorithm called Quick Sort will be significantly faster than our previous

sorting methods in most cases (as we will see later). In fact, its performance for "average" arrays will

be close to the theoretically best possible results. Here is this "quick" recursive sorting procedure:

Definition 7.3.15: Quick Sort

The basic idea of the Quick Sort algorithm is to partition, or rearrange, the array into three

distinct pieces: one piece consisting of one element that is in its sorted position, and two

subarrays that remain to be sorted. All elements of the first subarray are smaller than the single

element, all elements of the other are larger than it. This idea is then applied again to the smaller

and to the larger subarrays, until the entire array is sorted. Specifically:

Suppose the algorithm takes two integers as input, labeled left and right. Then if left is less

than right, rearrange A[left], … , A[right] so that there is a j such that:

 A[left], …, A[j-1] are less than A[j]

 A[j+1], …, A[right] are greater than A[j]

 Apply the algorithm again to the array A[left], …,A[j-1]

 Apply the algorithm again to the array A[j+1], …, A[right]

That does not really specify how exactly the numbers should be rearranged to partition the array

correctly, but that is not the point of the algorithm. In fact, different rearrangements are possible

and the entire procedure would still be called "Quick Sort". However, to provide a concrete

implementation of the Quick Sort algorithm, we do need to specify how this rearrangement can be

accomplished:

Java by Definition Chapter 7: Sequential Data Structures Page 20 of 112

Bert G. Wachsmuth DRAFT April 2009

Definition 7.3.16: The Rearrangement Step in Quick Sort

The Quick Sort algorithm asks for a particular rearrangement of the array. This step can be

accomplished as follows:

 ensure that the left element is less than or equal to the right element (swap if necessary)

 scan the array starting at left+1 until you find an element bigger than or equal to the left

one and call its index j

 scan the array starting at right-1 until you find an element less than or equal to the left

one and call its index k

 if j is less than k, swap A[j] and A[k] and continue scanning from j to the left and from k

to the right until eventually j is bigger than k (after multiple swaps, if necessary)

 once j is bigger than k, swap A[left] with A[k]

We have now completed the rearrangement: everything below A[k] is less than or equal to A[k]

and everything above A[k] is greater than or equal to A[k]. We can now repeat the process via

recursion, as described in the Quick Sort algorithm.

Here is an illustration of how this rearrangement algorithm works for the array 56, 27, 22, 95, 79,

45, 96:

 initially left is 0 (first element) and right is 6 (last element)

 56 is less than 96, so no initial swapping necessary

 we scan up from 27 until we find 95 at index j = 3

 we scan down from 45 until we find 45 at index k = 5 (same value)

 since j < k we swap 95 and 45, resulting in the array 56, 27, 22, 45, 79, 95, 96

 we scan up from 45 (j = 3) until we find 79 at index j = 4

 we scan down from 95 until we find 45 at index k = 3

 now j > k, so we swap 56 and 45, resulting in 45, 27, 22, 56, 79, 95, 96

This finishes the rearrangement part of the algorithm: we have rearranged the original array into

the three pieces [45, 27, 22], [56], and [79, 95, 96], which meet our requirements.

According to the Quick Sort algorithm, we now apply this process recursively first to 45, 27, 22 and

then to 79, 95, 96. Let's see what the algorithm will do for the first subarray 45, 27, 22: For this

subarray, left = 0 and right = 2.

 45 is bigger than 22, so we swap them, resulting in 22, 27, 45

 scanning up from 27 we find 27 right there at index j = 1

 scanning down from 27 we find 22 at index k = 0

 since j > k we swap 27 with 22

Again, we are done and we make another recursive call with input arguments 0 and -1 (= k-1). But

then left is bigger than or equal to right, so the (empty) base case of the recursion applies and the

left subarray is sorted.

Similarly, the algorithm will determine that the right subarray 79, 95, 96 is also sorted, which

means in total that the entire array is now sorted indeed.

As before, it's time for the implementation of this algorithm:

Java by Definition Chapter 7: Sequential Data Structures Page 21 of 112

Bert G. Wachsmuth DRAFT April 2009

Example 7.3.17:

Implement the Insertion Sort algorithm and test it on a random array of size 10 to see if

it works properly.

We had luck before with identifying subtasks, so let's try that again:

 We clearly need the ability to swap elements of the array but we have already implemented a

swap method for that

 The main sorting method should take as input only the array of doubles, but the quick sort

algorithm requires two integers left and right as input - therefore, we need a utility method

called, say, quickArrange, that has as input an array of doubles as well as integers left and

right.

 The quickArrange method should call itself twice with different parameters, therefore it will

be a double recursive method.

So far, therefore, we need as our most important method something like this:

public static void quickArrange(double A[], int left, int right)

{ if (left < right)

 { /* rearrangment code */ }

 quickArrange(A, left, k-1);

 quickArrange(A, k+1, right);

}

Next, according to the rearrangement algorithm we may need to swap the left and right elements

of the array at the beginning of the algorithm, set up indices j and k, repeat some scanning process

until the indices j and k are such that j > k, and then swap A[left] with A[k]. Therefore, our code

looks like:

public static void quickArrange(double A[], int left, int right)

{ if (left < right)

 { int j = left + 1;

 int k = right -1;

 if (A[left] > A[right])

 swap(A, left, right);

 while (j <= k)

 { /* scanning up and down according to the algorithm */ }

 swap(A, left, k);

 quickArrange(A, left, k-1);

 quickArrange(A, k+1, right);

 }

}

Note that we are using the swap method we previously implemented. What's left is the actual

scanning process:

while (A[j] < A[left])

 j++;

while (A[k] > A[left])

 k--;

Therefore, the complete method looks like this:

public static void quickArrange(double A[], int left, int right)

8

{ if (left < right)

8
 This method is double recursive with an empty base case.

Java by Definition Chapter 7: Sequential Data Structures Page 22 of 112

Bert G. Wachsmuth DRAFT April 2009

 { int j = left+1;

 int k = right-1;

 if (A[left] > A[right])

 swap(A, left, right);

 while (j <= k)

 { while (A[j] < A[left])

 j++;

 while (A[k] > A[left])

 k--;

 if (j < k)

 swap(A, j, k);

 }

 swap(A, left, k);

 quickArrange(A, left, k-1);

 quickArrange(A, k+1, right);

 }

}

That leaves the main sorting method, which will simply start the recursive process with the right

initial values:

public static void sortQuick(double A[])

{ quickArrange(A, 0, A.length-1); }

To test this implementation of our algorithm, simply add both of these methods to the previous

SortTest class, and modify its main method to call sortQuick instead of any other sort method. The

details are left as an exercise (compare example 7.3.18).

Now we have four different sorting methods at our disposal and we need to determine which, if any,

is the best. If that is difficult, we should at least point out some advantages and disadvantages of

either algorithm so that the user can make an informed decision as to which one to use for what job.

A few points are obvious:

 Selection sort is the most intuitive one and is easiest to implement.

 Quick sort is a double-recursive method, and hence may be burdened by the overhead and

memory needs of such a recursion. It is also the hardest to understand (most double-

recursive methods are tricky to figure out)

Some other points are pretty easy to figure out, based on the way the algorithms work:

 The utility method bubble returns true to sortBubble if the array is sorted. Therefore, the

bubble sort algorithm will stop after one pass through the array if the original array is

already sorted in ascending order. Thus this algorithm "detects" sorted arrays and should

handle them very quickly.

 Bubble sorting requires a lot of work at each pass, while it merely hopes that more than one

element will bubble into its proper position during each pass. Such hopes may be

disappointed, in which case the algorithm would expend a lot of work for little result.

 The insertion algorithm does not have to move any elements if the original array is already

sorted in ascending order. Therefore, this algorithm also detects sorted arrays and handles

them quickly.

 The selection sort will always work the same way, regardless of whether the original array is

already sorted or not. It does therefore not detect sorted arrays.

The question of whether quick sort can detect arrays that are already sorted is left as an exercise.

Java by Definition Chapter 7: Sequential Data Structures Page 23 of 112

Bert G. Wachsmuth DRAFT April 2009

To further compare these algorithms, we could run them on comparable data sets and measure the

time the various algorithms take to sort the initial arrays. In fact, we can create a simple program to

do exactly that:

Example 7.3.18:

Create a "sort algorithm test" class that executes the various sorting algorithms on data

sets of various sizes and measure the time it takes for each algorithm to finish sorting.

Create a table with these numbers and create appropriate xy graphs to view the results.

We have already implemented all methods necessary for the actual sorting algorithms. This time, we

embed these methods into a Sorter class that can be useful as a stand-alone class for sorting arrays

of doubles. We will add a few constants and methods to make this class a little more useful and

relegate the remaining methods (except for swap) to private utility methods to hide the complexity of

this class from outside view:

public class Sorter

{ public static final int SELECTION = 1;

 public static final int BUBBLE = 2;

 public static final int INSERTION = 3;

 public static final int QUICK = 4;

 public static void sort(double A[], int type)

 { if (type == SELECTION)

 sortSelect(A);

 else if (type == BUBBLE)

 sortBubble(A);

 else if (type == INSERTION)

 sortInsert(A);

 else

 sortQuick(A);

 }

 public static long sortTimed(double A[], int type)

 { long start = System.currentTimeMillis();

 sort(A, type);

 long stop = System.currentTimeMillis();

 return (stop - start);

 }

 /* The remaining methods are exactly as before */

 public static void swap(double A[], int pos1, int pos2)

 private static void sortSelect(double A[])

 private static void sortBubble(double A[])

 private static void sortInsert(double A[])

 private static void sortQuick(double A[])

 private static boolean bubble(double A[], int stop)

 private static void insert(double A[], int start)

 private static void quickArrange(double A[], int left, int right)

 private static int selectMin(double A[], int start)

}

We have added a sortTimed method that times a sorting routine. It uses the method

currentTimeMillis() from the System class, which returns the current time in milliseconds. That

allows us to keep track of the time that sorting a particular array takes. This method is not the most

exact, but it will allow us to compare the performances of the various sorting algorithms relative to

each other.

The program that will generate a comparison table of execution times for the various algorithms is

as follows. The only interesting method here is the randomArray method that produces an array of

random numbers whose length is specified as input to the method:

Java by Definition Chapter 7: Sequential Data Structures Page 24 of 112

Bert G. Wachsmuth DRAFT April 2009

public class SortPerformance

{ public static double[] randomArray(int n)

 { double A[] = new double[n];

 for (int i = 0; i < A.length; i++)

 A[i] = Math.random() * 100;

 return A;

 }

 public static void main(String args[])

 { System.out.println("Datapoints\tSelect\tBubble\tInsert\tQuick");

 for (int n = 1000; n <= 15000; n+=1000)

 { System.out.print("N = " + n + ":\t");

 for (int type = 1; type <= 4; type++)

 { double A[] = randomArray(n);

 System.out.print(Sorter.sortTimed(A, type) + "\t");

 }

 System.out.println();

 }

 }

}

Rather than showing the times produces by this program (which really depend on the particular

computer system used), we have plugged the numbers into a chart-generating package (such as

Microsoft Excel) to show a graphical comparison of execution times. The times relative to each other

should be similar regardless of the particular system.

Data Points (N)

T
im

e
s

Select Bubble Insert Quick

Figure 7.3.7: Sort Algorithm Performance, "random" data

This graph shows execution time to sort N random data points with each of our sorting algorithms. It

is clear that bubble sort performed the worst, selection and insertion sort performed similarly, with

insertion sort being slightly faster. Quick sort, however, is so much faster than the other algorithms

that its search times are close to negligible as compared to the other algorithms.

Hence, for "random" data the quick sort algorithm beats the other algorithms hands-down.

But that does not mean that this algorithm is the best in every situation. Let's run the program

again, but this time the array for whom the sorting time is measured is "almost sorted" instead of in

random order. In other words, we modify the above main method as follows:

public static void main(String args[])

Java by Definition Chapter 7: Sequential Data Structures Page 25 of 112

Bert G. Wachsmuth DRAFT April 2009

{ System.out.println("Datapoints\tSelect\tBubble\tInsert\tQuick");

 for (int n = 1000; n <= 15000; n+=1000)

 { System.out.print("N = " + n + ":\t");

 for (int type = 1; type <= 4; type++)

 { double A[] = randomArray(n);

 Sorter.sort(A, Sorter.QUICK);

 Sorter.swap(A, 0, A.length-1);

 System.out.print(Sorter.sortTimed(A, type) + "\t");

 }

 System.out.println();

 }

}

That means that an array of random numbers is generated, then sorted without measuring the

sorting time. Then the first and last elements in the array are swapped, creating an "almost sorted"

array. Only then is the array sorted again and the sorting time measured. Here are the results,

comparing sorting times for such "almost sorted" arrays and the various sort algorithms:

Data Points (N)

T
im

e

Select Bubble Insert Quick

Figure 7.3.8: Sort Algorithm Performance, "almost sorted" data

It is surprising that bubble sort is still worst, because according to our previous discussion it is

supposed to detect sorted arrays. But in this case the input array is not completely sorted and the

bubble sort algorithm fails to take advantage of that. This time, the algorithm that clearly

outperforms the others is insertion sort. Our previous champion, quick sort, is now just about

comparable to selection sort.

Hence, the perfect sort algorithm really should combine the "detection ability" of insertion sort with

the general speed of quick sort. Indeed, one can combine the insertion and quick sort algorithm to

produce a "best possible general purpose sorting algorithm". While the details of such an algorithm

are best discussed in a course on data structures, Java has - kindly - done the work of actually

implementing that algorithm for us.

7.2. Java Build-in Searching and Sorting Algorithms

Since searching and sorting arrays is a frequent task that classes need to perform, Java includes -

since version 1.2 - some build-in static methods to accomplish these tasks. These methods are very

Java by Definition Chapter 7: Sequential Data Structures Page 26 of 112

Bert G. Wachsmuth DRAFT April 2009

convenient and flexible to use and we will see in example 7.4.4 how they compare against our "hand-

made" methods and algorithms defined in section 7.3. If you do use these build-in methods, however,

your code will only run in JVM's that support version 1.2 and better of Java.9

Searching and Sorting Basic Data Types

All build-in searching and sorting methods are part of the java.util.Arrays class, so we will start

with that one:

Definition 7.4.1: Methods in the Arrays Class for Basic Data Types

The Arrays class is a utility class for manipulating arrays (such as sorting and searching). It

contains, among others, the following static methods for basic types:

 public static boolean equals(type[] a1, int[] a2)

 public static void fill(type[] a, int val)

 public static void fill(type[] a, int fromIndex, int toIndex, int val)

where type can be boolean, byte, char, short, int, long, float, or double, as well as the

methods

 public static void sort(type[] a)

 public static void sort(type [] a, int fromIndex, int toIndex)

 public static int binarySearch(type[] a, int key)

where type can be byte, char, short, int, long, float, or double. The binarySearch

method will return the index where key can be found in the array or a negative number otherwise.

The sort algorithm for arrays of basic data types is a modified quick sort algorithm. The Arrays

class is part of the java.util package and must be imported
10

.

Note that all methods are static so that you do not need to instantiate an object of type Arrays in

order to search or sort.

Example 7.4.2:

Let's play a (hypothetical) game: the computer selects 100 random integers between 1

and 100 and stores them in an array. You are asked to pick a number between 1 and 100

as well. If your number is part of the array, you win $10, otherwise you have to pay $10.

Would you play?

This question sounds like a probability theory question, which may or may not our strength. But we

are good at programming so we will try to use a simulation to find out the chances of winning before

deciding whether to play or not. After all, the array could be 100 times the number 39, in which case

9
 See definition 6.2.13 to find out how to ensure that your code is executed by the latest JVM available from Sun,

regardless of which version of Java is implement in your favorite web browser.
10

 Note that this class only includes binarySearch, not simple search. Therefore, an array must be sorted before we

can use the search method of this class.

Java by Definition Chapter 7: Sequential Data Structures Page 27 of 112

Bert G. Wachsmuth DRAFT April 2009

our chances of winning that would be very small, or it could be the numbers from 1 to 100 so that our

chances of winning would be perfect.

We will create a computer program that plays this game many times. Each time we record whether

the number we picked is part of the random array. Then we compute the ratio of the number of times

our guess was part of the array and the total number of games. That ratio will be our chance of

winning. Specifically, we need to perform the following steps:

 we create a random array of size 100 where each element is an integer between 1 and 100

 we select a random number between 1 and 100 (simulating our random guess)

 we search the array for that number (before we can search the array using binarySearch we

must make sure it is sorted)

 if found, we increment a "found" counter

 we repeat that process, keeping a "total" counter of tries

 the ratio of "found" counter and "total" counter will be our winning chance

Now that we have broken up our task into smaller subtasks it is easy to create the corresponding

program:

import java.util.Arrays;

public class GuessingChance

{ final static int NUM_GAMES = 10000;

 final static int SIZE = 100;

 public static int[] sortedRandomArray(int size)

 { int A[] = new int[size];

 for (int i = 0; i < A.length; i++)

 A[i] = (int)(A.length*Math.random()) + 1;

 Arrays.sort(A);
11

 return A;

 }

 public static void main(String args[])

 { int total = 0;

 int found = 0;

 while (total < NUM_GAMES)

 { int A[] = sortedRandomArray(SIZE);

 int number = (int)(A.length*Math.random()) + 1;

 if (Arrays.binarySearch(A, number) >= 0)

 found++;

 total++;

 }

 System.out.print("Size: " + SIZE + ", ");

 System.out.println("Chance: " + (double)found / total * 100);

 }

}

Now let's run this program several times to find the ratio we want.

11

 We need to sort the array so that we can use the binarySearch method. It would actually be more economical to

not sort the array and use simple search instead of binary search but the Arrays class does not include a simple

search method.

Java by Definition Chapter 7: Sequential Data Structures Page 28 of 112

Bert G. Wachsmuth DRAFT April 2009

Figure: 7.4.1: Chances of winning $10 in "random array search" game

Based on figure 7.4.1 it seems that our chances of winning are about 63.5%. That's much better than

fifty-fifty, so we will definitely play the game.

As it turns out, there's an interesting mathematical number hidden in the above example. To find it,

let's generalize the game.

Example 7.4.3:

Suppose an array of N integers is generated where each element is a random integer

between 1 and N. Now select a random number between 1 and N as well. What is the

chance that this number is part of the array? In particular, determine the answer if N

gets larger and larger (in math terminology we want to find the limit as N goes to

infinity).

In example 7.4.3 we found that chance for N = 100 to be about 62%. Our attempt to find the answer

for the more general question would simply be to run the above program for several array sizes and

hope to detect a pattern. The code is simple, we just turn SIZE into a variable and adjust it in a loop

as follows:

import java.util.Arrays;

public class GuessingChance

{ final static int NUM_GAMES = 10000;

 public static int[] sortedRandomArray(int size)

 { int A[] = new int[size];

 for (int i = 0; i < A.length; i++)

 A[i] = (int)(A.length*Math.random()) + 1;

 Arrays.sort(A);

 return A;

 }

 public static void main(String args[])

 { for (int size = 2; size < 9182; size *= 2)

 { int total = 0;

 int found = 0;

 while (total < NUM_GAMES)

 { int A[] = sortedRandomArray(size);

 int number = (int)(A.length*Math.random()) + 1;

 if (Arrays.binarySearch(A, number) >= 0)

 found++;

 total++;

 }

Java by Definition Chapter 7: Sequential Data Structures Page 29 of 112

Bert G. Wachsmuth DRAFT April 2009

 System.out.print("Size: " + size + ", ");

 System.out.println("Chance: " + (double)found / total * 100);

 }

 }

}

When we execute this program, the chances of winning

we get will look similar to those in table 7.4.2. It seems

that for different sizes the probabilities are slightly

different but they seem to settle on a number slightly

above 63% as the array size gets larger.

Some quick and reasonably easy mathematics will allow

us to compute the exact probability of winning:

Let's say N = 2. All possible random arrays that could be

created are [1, 1], [1, 2], [2, 1], and [2, 2]. The number to

guess could be 1, which occurs in 3 out of 4 possible

arrays, or it could be 2, which also occurs in 3 out of 4

possible arrays. Therefore, for N = 2 the chance of

winning is 3/4 or 75%.

 Size N Chance

 2 75.069%

 4 68.487%

 8 65.743%

 16 64.295%

 32 63.663%

 64 63.351%

 128 63.163%

 256 63.577%

 512 62.805%

 1024 63.051%

 2048 63.363%

 4096 63.023%

 8192 62.985

 Table 7.4.2: Winning chances

Now let's say N = 4. The array has four elements, each containing a number between 1 and 4.

Therefore, there are 4 x 4 x 4 x 4 = 44 different array combinations. Take a number, say 2. There are

3 x 3 x 3 x 3 = 34 possible array combinations that do not include 2 (each element could be 1, 3, or 4),

so the rest, namely 44 – 34 will include 2. Therefore, the chance that 2 is part of the array is (44 –

34)/44 = 1 – (3/4)4. That is the same for every other number so that for N = 5 the chance of winning is

1 – (3/4)4 = 68.359%

In general, the above argument works to show that for an array of size N the chance of winning is
N

N

N

1
1 . You may remember from calculus that 11

lim

e

N

N
N

N
, where e = 2.718281828 is

Euler's number (check your calculus textbook). Therefore, we have for larger and larger N that the

probability will converge to .6321201 1 e or 63.2%. Our simulation indeed showed this fairly

well.12

In examples 7.4.2 and 7.4.3 we created a random array that was sorted and searched via the build-in

Arrays methods sort and binarySearch. It would have been more economical to not sort the array

and use a simple search, but the Arrays class does not include simple search. The program in

example 7.4.3 is about as fast as the Arrays.sort algorithm, so we would like to know how good that

algorithm is compared to our own created in section 7.3.

Example 7.4.4:

12

 This example also gives an interesting algorithm to approximate the value of Euler's number e, using only random

numbers (and some programming). Run our method for some large N and use the probability you get to approximate

e. In our case, N = 8192 gave a probability of 0.62985. Since
e

1162985.0 you can solve this equation for e to

get 2.7016
.37015

1

62985.01

1

e . That's pretty close to the correct value of e = 2.718281828.

Java by Definition Chapter 7: Sequential Data Structures Page 30 of 112

Bert G. Wachsmuth DRAFT April 2009

Modify the previous SortPerformance class from example 7.3.18 so that it includes the build-in

sort method from the Arrays class to compare the performance of this sorting algorithm to our

"hand-made" algorithms from the Sorter class. Make sure to run the performance test for

random arrays as well as for "almost sorted" arrays.

Instead of adding a new sort algorithm to the Sorter class, we simply use the build-in method

directly and modify the main method of the SortPerformance class as follows (the new code is in bold

and italics):

import java.util.Arrays;

/* first part of the class as before */

public static void main(String args[])

{ System.out.println("Datapoints\tSelect\tBubble\tInsert\tQuick\tJava");

 for (int n = 1000; n <= 15000; n+=2000)

 { System.out.print("N = " + n + ":\t");

 for (int type = 1; type <= 4; type++)

 { double A[] = randomArray(n);

 System.out.print(Sorter.sortTimed(A, type) + "\t");

 }

 double A[] = randomArray(n);

 long start = System.currentTimeMillis();

 java.util.Arrays.sort(A);

 long stop = System.currentTimeMillis();

 System.out.println(stop - start);

 }

}

This program evaluates the performance for random arrays. The output looks similar to the

following (the actual numbers will be different on different computer systems):

Figure 7.4.3: Comparing "hand-made" sort with java.util.Arrays.sort for random arrays

Thus, the build-in algorithm for java.util.Arrays.sort is comparable to our QuickSort. That is no

surprise because both are using an algorithm based on QuickSort.

Now let's compare sort performance for almost sorted arrays. As before, we adjust the main method

of the SortPerformance class so that it generates a random array, then we sort it without timing it.

Then we swap the first and last elements to create an almost sorted array and we time our

algorithms using that array:

public static void main(String args[])

Java by Definition Chapter 7: Sequential Data Structures Page 31 of 112

Bert G. Wachsmuth DRAFT April 2009

{ System.out.println("Datapoints\tSelect\tBubble\tInsert\tQuick\tJava");

 for (int n = 1000; n <= 15000; n+=2000)

 { System.out.print("N = " + n + ":\t");

 for (int type = 1; type <= 4; type++)

 { double A[] = randomArray(n);

 java.util.Arrays.sort(A);

 swap(A, 0, A.length-1);

 System.out.print(Sorter.sortTimed(A, type) + "\t");

 }

 double A[] = randomArray(n);

 java.util.Arrays.sort(A);

 Sorter.swap(A, 0, A.length-1);

 long start = System.currentTimeMillis();

 java.util.Arrays.sort(A);

 long stop = System.currentTimeMillis();

 System.out.println(stop - start);

 }

}

Figure 7.4.4: Comparing "hand-made" sort with java.util.Arrays.sort for almost sorted arrays

This time, java.util.Arrays.sort is comparable to our insertion sort algorithm. But now the build-

in algorithm has an advantage over the ones we created: it performs best for random arrays as well

as for almost sorted arrays. Thus, this algorithm includes the advantages of both InsertionSort and

QuickSort without inheriting their weaknesses.

A more thorough performance analysis of these algorithms would involve "big-O" notation, which

measures the order of growth of an algorithm independent of machine-specific considerations such as

processor speed and available memory. For details on "big-O" please refer to the appendix. For

completeness, here is an overview of the performance of our algorithms using this mathematical

notation.

Definition 7.4.5: Performance of Sort Algorithms in Big-O Notation

The sort algorithms introduced in this chapter have the following order of growth:

 Average Case Best Case Worst Case

 Selection Sort O(n
2
) O(n

2
) O(n

2
)

 Bubble Sort O(n
2
) O(n) O(n

2
)

 Insertion Sort O(n
2
) O(n) O(n

2
)

 Quick Sort O(n log(n)) O(n log(n)) O(n
2
)

Java by Definition Chapter 7: Sequential Data Structures Page 32 of 112

Bert G. Wachsmuth DRAFT April 2009

 Java Build-in O(n log(n)) O(n log(n)) O(n log(n))

In addition:

 Selection Sort performs lots of comparisons and few moves. It is best suited for data that

compares quickly.

 Insertion Sort performs lots of moves and fewer comparisons. It is best suited for data that

can be moved quickly.

 Bubble Sort does not have many advantages and is generally the least desirable algorithm.

 Quick Sort is recursive and general memory considerations associated with recursion apply.

It can, however, be improved to yield the best possible general purpose sorting algorithm

known today.

 Java's build-in algorithm is flexible and fast but requires Java version 1.2 or better.

Note: The theoretically best possible sort algorithm can not perform better than O(n log(n)) on

average.

Based on our performance analysis it seems that the java.util.Arrays.sort method is preferable

over our own methods, unless there are specific reasons for creating a custom sorting algorithm. In

fact, there's another reason why the build-in algorithm is quite handy: it can easily handle sorting

(and searching) arrays of objects in addition to the basic data types.13 To be sure, in the exercises you

will be asked to modify "our" sort algorithms so that they, too, can handle arrays of type Object.

Searching and Sorting Objects

Before we can sort (or search for) objects we need a mechanism to compare objects, i.e. we need to be

able to decide whether two objects are considered equal, or which one is considered larger than the

other. After all, our algorithms all need to compare the elements in the array to be searched or

sorted. For basic data types the standard comparison operators ==, <, and > work just fine, but for

the type Object Java provides the Comparator interface for that purpose. That interface requires two

methods to be implemented:

Definition 7.4.6: The Comparator Interface

The Comparator interface is intended to impose an ordering on a collection of objects. It is

frequently used to sort or search for objects in an array. The ordering imposed by a Comparator

should satisfy the following conditions:

 Consistent: (compare(x,y) == 0) if and only if (x.equals(y))

 Anti-Reflexive: sgn(compare(x,y)) == -sgn(compare(y,x)) for all x and y

 Transitive: (compare(x,y)>0) && (compare(y,z)>0) implies (compare(x,z)>0)

The Comparator interface is part of the java.util package and must be imported. The Java API

defines it as follows:

 public abstract interface Comparator

13

 It may still be useful to implement your own searching and sorting methods if you want to ensure that your code

executes in every JVM, not only in those supporting the build-in methods (version 1.2 and better).

Java by Definition Chapter 7: Sequential Data Structures Page 33 of 112

Bert G. Wachsmuth DRAFT April 2009

 { public int compare(Object o1, Object o2)
14

 public boolean equals(Object obj)
15

 }

Such a Comparator is similar to our Searchable interface from example 7.3.7 but uses only one

method returning an integer instead of three methods returning a boolean. In addition, our

Searchable interface needs to be implemented by objects that want to be searched or sorted. The

Comparator interface, on the other hand, is used in a separate class and applied to objects rather

then implemented by objects. The specific syntax for search and sort methods using a Comparator is

given in the next definition:

Definition 7.4.7: Methods in the Arrays Class for Object Types

The Arrays class mentioned in definition 7.4.1 also contains the following static methods to

search and sort Object arrays:

 public static void fill(Object[] a, Object val)

 public static void fill(Object [] a, int fromIndex, int toIndex,

 Object val)

 public static void sort(Object[] a, Comparator c)

 public static void sort(Object [] a, int fromIndex, int toIndex,

 Comparator c)

 public static int binarySearch(Object [] a, Object key, Comparator c)

The sort algorithm for arrays of Object types is a modified merge sort algorithm. The class is

part of the java.util package and must be imported.

Note that sort and binarySearch take a separate Comparator object as input. Another possibility

would be to require the objects to be searched or sorted to implement the Comparator interface

directly. Either approach would work fine but the approach chosen by Java does not require

changing an existing class just to sort its objects.

Example 7.4.8:

Say we have an array consisting of elements of type double, int, or String. We want to

sort that array so that all strings occur first, then all doubles, and finally all integers.

Within their own types the elements should be sorted as usual. Create a sample program

to accomplish that. Also illustrate how to search the array once it is sorted.

Obviously we can not have an array containing double, int, and String types so we need to use the

wrapper types Double and Integer before storing Double, Integer, and String in the required

array. The method to use for sorting is Arrays.sort, which requires an objects array as well as a

Comparator as input. The rules for comparing the objects must be implemented in the Comparator

class according to the following scheme:

 if 1st object is a String then:

 if 2nd object is not a String, 1st object is smaller than 2nd

14

 If compare(o1, o2) < 0, then o1 is less than o2. If compare(o1, o2) == 0 then o1.equals(o2). If compare(o1,

o2) > 0, then o1 is bigger than o2.
15

 Every Java class extends Object and Object already contains an equals method. By default it checks whether

two objects are stored at the same memory location. You can override this method if your objects implement

Comparator to have control over when exactly two objects are considered equal.

Java by Definition Chapter 7: Sequential Data Structures Page 34 of 112

Bert G. Wachsmuth DRAFT April 2009

 if 2nd object is also a String, compare them as String

 if 1st object is a Double then:

 if 2nd object is a String, 1st one is bigger

 if 2nd object is also a Double, compare them as Double

 if 2nd object is an Integer, 1st one is smaller

 if 1st object is an Integer then:

 if 2nd object is also an Integer, compare them as Integer

 if 2nd object is not an Integer, 1st one is smaller

Therefore we create a class that implements Comparator as follows:

import java.util.Comparator;

public class SortRule implements Comparator

{ public boolean equals(Object obj1, Object obj2)

 { return obj1.equals(obj2); }

 public int compare(Object obj1, Object obj2)

 { if (obj1 instanceof String)

 { if (obj2 instanceof String)

 return ((String)obj1).compareTo((String)obj2);

 else

 return -1;

 }

 else if (obj1 instanceof Double)

 { if (obj2 instanceof String)

 return 1;

 else if (obj2 instanceof Double)

 return ((Double)obj1).compareTo((Double)obj2);

 else

 return -1;

 }

 else if (obj1 instanceof Integer)

 { if (obj2 instanceof Integer)

 return ((Integer)obj1).compareTo((Integer)obj2);

 else

 return 1;

 }

 else

 return -1;

 }

}

The compare method follows closely the above outline, using the instanceof operator to check the

type of obj1 and obj2. Once the type of the input objects has been identified we use the compareTo

method to compare like objects. While String, Double, and Integer all have a compareTo method, we

can not use polymorphism because the common superclass of these classes, Object, does not have

that method.

The equals method, on the other hand, is easy to implement: all three of our classes own that

method, which they inherit from Object. Therefore we can let polymorphism decide which equals

method is appropriate and return its result as the return value of the Comparator method equals.

Once the class implementing the particular rules for comparing objects is implemented it is

exceedingly easy to sort and search arrays according to these rules:

import java.util.Arrays;

public class SortingObjects

Java by Definition Chapter 7: Sequential Data Structures Page 35 of 112

Bert G. Wachsmuth DRAFT April 2009

{ public static Object[] createObjectArray()

 { Object obj[] = {"Sorting is easy", new Double(-10),

 new Integer(-10),

 "Java by Definition", new Double(10),

 new Integer(10),

 new Double(-10), new Integer(-10) };

 return obj;

 }

 public static void print(Object obj[])

 { for (int i = 0; i < obj.length-1; i++)

 System.out.print(obj[i] + ", ");

 System.out.println(obj[obj.length-1]);

 }

 public static void main(String args[])

 { Object obj[] = createObjectArray();

 SortRule rule = new SortRule();

 System.out.println("BEFORE:");

 print(obj);

 Arrays.sort(obj, rule);

 System.out.println("SORTED:");

 print(obj);

 Double d = new Double(10);

 Float f = new Float(10);

 System.out.print("Is 'Double(10)' part of the array? ");

 System.out.println((Arrays.binarySearch(obj, d, rule) >= 0));

 System.out.print("Is 'Float(10)' part of the array? ");

 System.out.println((Arrays.binarySearch(obj, f, rule) >= 0));

 }

}

Figure 7.4.5 shows the result of searching and sorting16 this array.

Figure 7.4.5: Results of executing SortingObjects

As our final example, let's use the Arrays.sort method and an appropriate Comparator to sort

Address objects similar to example 7.3.8.

Example 7.4.9:

Create a simple Address class with fields for first and last name and email address

(compare example 7.3.8). Then create an array of four addresses (or so) in some random

order. Finally, sort the array so that the addresses appear in (a) increasing and (b)

decreasing order.

16

 Of course we can only apply binarySearch because our array has been sorted. Note also that while the value of f

= new Float(10) is part of the array, the object f is not.

Java by Definition Chapter 7: Sequential Data Structures Page 36 of 112

Bert G. Wachsmuth DRAFT April 2009

By now we have seen the Address class plenty of time - perhaps it is time to pick on a different

example - so it's just listed for easy reference (we have marked the fields as protected for easy

access):

public class Address

{ protected String first, last, email;

 public Address(String _first, String _last, String _email)

 { first = _first;

 last = _last;

 email = _email;

 }

 public String toString()

 { return last + ", " + first + " (Email: " + email + ")"; }

}

In order to sort arrays of addresses we need a Comparator class that will determine the ordering of

addresses. In our case we decide that the order of addresses should be determined by the

lexicographical order of last names, then by first names if two last names agree (compare to the

Address class implementing the Searchable interface in example 7.3.8). Before creating the

corresponding Comparator class, however, we need to override the default equals method that the

Address class inherits from Object so that we can ensure consistency with the Comparator class.

Thus, we add the following method to the Address class before proceeding:

public class Address

{ protected String first, last, email;

 public Address(String _first, String _last, String _email)

 { /* as before */ }

 public String toString()

 { /* as before */ }

 public boolean equals(Object obj)

 { if (obj instanceof Address)

 { Address a = (Address)obj;

 return ((last.equals(a.last)) && (first.equals(a.first)));

 }

 else

 return false;

 }

}

Now we can create a Comparator that is designed so that it designates two addresses as equal

exactly when one address would declare another one as equal. Otherwise, we'll use lexicographical

ordering of the last and first names to determine when one address is smaller or larger than another:

import java.util.*;

public class AddressCompare implements Comparator

{ public boolean equals(Object obj1, Object obj2)

 { return obj1.equals(obj2); }

 }public int compare(Object obj1, Object obj2)

 { if (!((obj1 instanceof Address) || (obj1 instanceof Address)))

 return false;

 else

 { Address a1 = (Address)obj1;

 Address a2 = (Address)obj2;

 if (a1.last.compareTo(a2.last) < 0)

 return -1;

 else if (a1.last.equals(a2.last))

 return (a1.first.compareTo(a2.first));

 else

Java by Definition Chapter 7: Sequential Data Structures Page 37 of 112

Bert G. Wachsmuth DRAFT April 2009

 return +1;

 }

 }

}

In fact, we have used the compareTo method of the String class to impose an ordering on addresses

so that addresses are ordered in increasing order. We could just as well design a Comparator that

imposes an ordering in decreasing order. This is easy to do by just "reversing" the previous

Comparator:

import java.util.*;

public class AddressCompareReverse extends AddressCompare

{ public int compare(Object obj1, Object obj2)

 { return -super.compare(obj1, obj2); }

}

Now we can easily sort an array of addresses in either increasing or decreasing order as follows:

import java.util.*;

public class SortTest

{ public static void printAddresses(String msg, Address data[])

 { System.out.println(msg);

 for (int i = 0; i < data.length; i++)

 System.out.println("\t" + data[i]);

 }

 public static void main(String args[])

 { Address data[] = {

 new Address("Bert", "Wachsmuth", "wachsmut@shu.edu"),

 new Address("John", "Doe", "doejohn@somewhere.edu"),

 new Address("Jane", "Doe", "doejane@somewhere.edu"),

 new Address("Rip", "van Winkle", "rwinkle@somewher.edu")};

 printAddresses("Original order:", data);

 Arrays.sort(data, new AddressCompare());

 printAddresses("Sorted ascending:", data);

 Arrays.sort(data, new AddressCompareReverse());

 printAddresses("Sort descending:", data);

 }

}

Java by Definition Chapter 7: Sequential Data Structures Page 38 of 112

Bert G. Wachsmuth DRAFT April 2009

Figure 7.4.6: Results of sorting addresses

Chapter 8: Abstract Data Types

In chapter seven we focused on recursion, searching, and sorting. These techniques really do not take

advantage of the fact that Java is an object-oriented programming language. That is particularly

evident since the methods we introduced in that chapter were static methods and do not require

instantiation of an object. In this chapter we also want to focus on general programming techniques

that can be implemented in a variety of languages, but this time we will make extensive use of

objects.

In section 8.1 we will introduce data storage structures such as lists, queues, and stacks that will be

welcome additions to arrays, the only mass-storage structure we know so far.17 The structures we

will cover will be dynamic, i.e. they will only use as much memory as necessary at any given time,

and flexible, i.e. they will form "reusable" classes that can be used without changes in many

situations. Such dynamic structures form the basis for most commercial programs and a thorough

understanding of them is essential for any successful programmer.

In section 8.2 we will explain how to use the structures created in 8.1 to implement a mathematical

expression parser, i.e. a class that can translate and evaluate mathematical expressions such as

"8*(14.4-99.3)^2 + (9.3–1.1)*(9.3+1.1)". While this section is not necessary to understand lists,

stacks, and queues, it provides an interesting and useful application that serves to illustrate the

usefulness of our structures as well as the power of object-oriented programming. The example is

rather long and could be skipped at first reading of this chapter.

In section 8.3 we will introduce the sequential structures that are build-in to Java since version 1.2.

Just as Java includes ready-made searching and sorting methods18, it also includes ready-to-use

sequential structures such as lists and stacks (which are, to be sure, quite extensive and complete).

Section 8.1 will form the theoretical background to this section, but if you only want to learn about

using dynamic structures you could jump ahead to section 8.3 right away and return to 8.1 and 8.2 at

a later time. If you do use these build-in classes your code will only run in JVM's that support Java

version 1.2 or better.19

The purpose of this chapter is not to be a complete discussion of abstract data types. That will be left

to a "Data Structures" course. Instead it will illustrate how some common data structures such as

List, Stack, and Queue can be implemented in the Java language, and give several examples of their

use.

Please note: several of the examples and exercises will compare the performance of various classes. It

would be a good idea to review the "order of growth" of a method as defined in the appendix.

17

 To be picky, in chapter 6 we have seen data storage structures other than arrays, namely the models associated

with various views. In this section we will explain in detail how these models can store data dynamically, allocating

only as much memory as necessary.
18

 See section 7.4
19

 One particular dynamic structure called Vector is part of Java since the beginning and is therefore supported by

any JVM.

Java by Definition Chapter 7: Sequential Data Structures Page 39 of 112

Bert G. Wachsmuth DRAFT April 2009

7.3. Sequential Data Structures

The structures we will introduce in this section are examples of a general concept called abstract

data types. We already know that Java contains a variety of basic or atomic data types (double, int,

char, etc) and new types can be created simply by designing a class. Abstract data types (ADT's)

describe conglomerates of atomic, or basic, data types that are used to store data, endowing it with

some type of internal structure and with operations to manipulate the data.

Definition 8.1.1: Abstract Data Type, or ADT

An Abstract Data Type, or ADT, is a specification of a data structure in abstract terms, without

reference to programming language or machine dependent terminology. Abstract data type

specifications contain two parts:

 a description of the data together with an internal structure of the data

 a description of the valid (and invalid) operations that can be performed on this data

Abstract data types, by nature of being abstract, can not be used directly in a program, but they

can be implemented into concrete instances, which then can be used in programs.

Abstract Data Types are typically described in Java by an appropriate interface. That interface

describes as comments the data and its structure and lists as abstract methods the valid operations

on that data. A concrete implementation of an ADT and its corresponding interface can then be

provided by one or more classes. In our case we will for simplicity use classes to realize abstract data

types directly, skipping the step of first defining an interface for an ADT.

To ensure that the conditions that will lead to successful applications of the various operations

described in an ADT are satisfied, a Java class implementing an ADT can - and should - make use of

the exception mechanism.

The data structure imposed by an ADT can take many different forms. Data can be organized

sequentially, hierarchically, in clusters, according to "size", etc. The structures that we will focus on

in this chapter are sequential structures, i.e. data that is arranged in such a way that individual

data items have one successor, one predecessor, or both.20 Other structures (for example hierarchical

structures such as "trees") are left to courses specifically focusing on data structures and would go

beyond the scope of this text.

Lists

Until now the only data structure we had to store large amounts of data was an array, either one or

multi-dimensional. Arrays, however, are not flexible enough in many situations because they are

declared to have a fixed size. Of course the size could be at runtime, but once declared the size of an

array is fixed. That leads to two problems:

20

 In section 6 we have already seen a non-linear data structure: javax.swing.JTree in some detail, but we have not

provided a theoretical framework for such hierarchical structures.

Java by Definition Chapter 7: Sequential Data Structures Page 40 of 112

Bert G. Wachsmuth DRAFT April 2009

 Waste of memory: an array can be declared to be of a large size, but only a small part of it is

used. The unused part of the array occupies memory that is not available to be allocated by

the JVM.

 Lack of memory: an array is declared to be of some size, but in the course of a program it

turns out that it needs to be larger. One could create a new and larger array and copy the

elements from the old array into the new one, but that takes precious computing time.

Example 8.1.2:

Outline the data structure you would use to create a simple text-editing program.

Discuss the advantages and disadvantages of your choice(s).

Leaving aside the (non-trivial) details of what a text editing program should be able to do, it needs,

in essence, to be able to store and manipulate characters. To store these character we have two

choices:

 we could use an array of characters

 we could use a string

If we used an array of characters we would have to declare it at the beginning of our program. Thus,

we would need to specify a maximum number of characters our text editor could handle. That is the

approach that was chosen for simple text editors21 such as Microsoft Windows Notepad, which can

handle up to approximately 32,000 characters. This could be accomplished by introducing a field in

the text editor class like:

char letters[] = char[32000];

Even if we did not mind this size limitation, we would occupy 32,000 bits of memory even if the

actual text file we are working on contains only 10 characters. That, clearly, is not an optimal

solution.

If we used a String, we would have the advantage that a String can grow (and shrink) dynamically,

as needed. However, the particular methods that the String class offers may or may not be the most

useful set of methods for our particular situation. In addition, we don't know whether there is a

performance penalty in using a String, because we don't really know how a String object manages to

grow and shrink.22 In particular, if at one time our String was very large, but then needed to shrink

to a small size (because, say, of a "cut" operation in our editor) we don't know whether any memory is

really returned to the JVM at that time. Therefore, a String is may not be an optimal solution either.

Even if a String would work as a dynamic structure for characters, it could not be used as a general

dynamic storage structure for other data types. Therefore, we are in need of a new structure with the

following features:

 the structure should always occupy as much memory as necessary

 the structure should be able to grow at any time, and accomplish its growth quickly

 the structure should be able to shrink at any time and return unused memory to the JVM

21

 The java.awt.TextField actually has the same constraint: it can only hold up to about 32,000 characters. The

javax.swing.JTextField, on the other hand, has no such limitations due to the model/view split it uses.
22

 As a matter of fact a String is not useful at all for dynamically storing characters. Another class called

StringBuffer should be used for strings that vary in length, while String is reserved for strings of fixed size. In our

programs most strings were more or less fixed so we did not have much use for StringBuffer.

Java by Definition Chapter 7: Sequential Data Structures Page 41 of 112

Bert G. Wachsmuth DRAFT April 2009

 the structure should be ordered so that every element has a well-defined location

Before worrying about how to actually implement such a structure, we will formalize it in an

abstract way and call such a structure a list.

Definition 8.1.3: ADT List

A list is an ordered structure of elements such that it is either empty or it has a unique first

element, every element except for the last one has one immediate successor, and the last element

is that one without a successor. One element in a non-empty list is always designated as the

current element. In addition, a list should provide the following operations:

 create a empty list

 designate the first element of a non-empty list as the current element

 move the current element to the successor of the current element in an non-empty list, unless

the current element is the last

 insert an element into the list

 retrieve the element designated as current, unless the list is empty

 remove the current element from the list, unless the list is empty

 replace the current element in the list by another element, unless the list is empty

 check whether a list is empty

 check whether the current element is the last element

If we had such a structure, we could easily see how to use it for a text editor program. The list would

store characters, it could grow at any time via the insert operation, and it could shrink at any time

via the remove operation (which would return any unused memory to the JVM). We could access any

element in the list by first moving to the first one, then moving through as many successors as

necessary to eventually retrieve the element we want. Based on those operations we could

implement more advanced operations such as "replace a group of characters", or "save all characters

to disk", and so forth.

Since the above list structure is defined without reference to any implementation-specific details it is

an abstract data type. To be useful we need to provide an implementation of this ADT into a concrete

data type and we will naturally use a class for that, bypassing an interface. To model our abstract

data type list we will hide all necessary implementation details from the user and we will define the

visible part of a List class as follows:

Definition 8.1.4: List class

A List is either empty or a sequential structure of elements such that one element is always

designated as the current one. The List class supports the following methods:

 constructor: creates an empty List containing no elements

 public void first(): makes the first element the current one. Exception: can only be used

if the list is not empty

 public void next(): makes the element after the current one the (new) current one.

Exception: can only be used if the List is not empty, and the current element is not the last

 public void insert(Object o): inserts an element, or object, into the List

Java by Definition Chapter 7: Sequential Data Structures Page 42 of 112

Bert G. Wachsmuth DRAFT April 2009

 public Object retrieve(): returns the element designated by current. Exception: can only

be used if the List is not empty

 public void remove(): deletes the current element from the List. Exception: can only be

used if the List is not empty

 public void replace(Object o): replaces the current element by another one. Exception:

can only be used if the List is not empty

 public boolean isEmpty(): returns true if the List is empty, false otherwise

 public boolean isLast(): returns true if the current element is the last one, false

otherwise

The next step would be to find a concrete realization of this class, i.e. to specify the code that makes

the class work as specified. There are two possible standard solutions in Java:

 The first one uses an array that is suitably modified during an insert and remove operation.

We will leave this solution (mostly) to the exercises.

 The second approach uses a construction that wraps the elements to be stored in a class

called a Node

A list is supposed to store data such that each data element contains a successor. Therefore,

elements in a list really consist of two pieces: the data and a reference to the successor. A Node is a

utility class that models this situation. It should be comprised of two pieces: one piece to store a Java

object, and another piece to store a reference to another Node.

Definition 8.1.5: The Node class

A Node is a class that can store an arbitrary Java Object such that:

 it can return and replace the Object stored

 it can contain a reference to another Node called the successor

In our implementation, a Node contains two non-private fields, one called data that stores the

actual object and another called next to store a reference to another Node object, if any, or null:

 class Node

 { protected Object data;

 protected Node next;

 protected Node()

 { data = null; next = null; }

 protected Node(Object _data)

 { data = _data; next = null; }

 }

We have marked the fields data and next as protected so that they can be used by classes in the

same package (or directory) as the Node class. We could have chosen to mark all fields as private and

implement the appropriate set and get methods, but for simplicity we will use the protected

modifier.

A Node can be pictured as follows, where we denote a reference to null by an electrical "grounding"

symbol:

Java by Definition Chapter 7: Sequential Data Structures Page 43 of 112

Bert G. Wachsmuth DRAFT April 2009

nextdata

Figure 8.1.1: A properly grounded Node

Example 8.1.6:

Write a code segment that creates three nodes A, B, and C, that form a circular reference.

Node A should point to B, B should point to C, and C should point back to A. In the data

piece of nodes A, B, and C store the strings "Java", "by", "Definition", respectively. Then

check the output produced by the statement:

System.out.println(A.next.next.next.data);

First, let's consider the corresponding picture: we want to create three nodes that look as follows:

nextdata nextdata

nextdata

A

B C

Figure 8.1.2: Three nodes arranged with circular references

Therefore, our code needs to instantiate three new nodes, then adjust the next references of each one

to point to the correct node in turn. Without worrying about storing the data, the code would be:

Node A = new Node();

Node B = new Node();

Node C = new Node();

A.next = B;

B.next = C;

C.next = A;

This code will indeed create the nodes arranged with circular references. Next, we need to store the

appropriate strings in the data piece of each node by using the second from of the constructor and

call on the System.out.println method to see the desired output:

public class CircularNodes

{ public static void main(String args[])

 { Node A = new Node(new String("Java"));

 Node B = new Node(new String("by"));

 Node C = new Node(new String("Definition"));

 A.next = B;

 B.next = C;

 C.next = A;

 System.out.println(A.next.next.next.data);

 }

}

Since A.next points to B, we have A.next.next.next.data = B.next.next.data, and since B.next

equals C, we have B.next.next.data = C.next.data. Finally, C.next is the same as A, so that

C.next.data = A.data. Therefore, the output will be the string "Java", which will be confirmed by

running the above program (the Node class must be saved to the same directory before compiling and

executing this class).

Java by Definition Chapter 7: Sequential Data Structures Page 44 of 112

Bert G. Wachsmuth DRAFT April 2009

Figure 8.1.3: Output of CircularNodes program

Nodes can be tied together to form a sequential structure that could represent our List class we want

to create:

Figure 8.1.4: A sequential structure consisting of several nodes tied together

However, for this list to be valid, one of the nodes must be designated as the current node, and we

also need to have a reference to the start of the list in order to access its nodes. Hence, our new

picture of a List using nodes looks as follows:

currentstart

Figure 8.1.5: Image of a non-empty List

In other words, a List really consists of two reference variables start and current, and any number

of nodes which on their own point to their successor, if any, or to null for the last node. The nodes,

however, are not stored internally in the list class, because once we have access to the first node (via

the start reference) we can reach all nodes by using the next references of each node.

Once we have a picture in mind we should be able to implement the appropriate class:

Example 8.1.7:

Create a concrete implementation of a List class. If an exception is necessary to define

particular methods, create it as well.

First, let's reconsider the conditions that ensure success of the various operations:

 first() requires a non-empty list

 next() requires a non-empty list and the current element should not be the last

 retrieve() requires a non-empty list

 remove() requires a non-empty list

 replace(Object o) requires a non-empty list

Therefore, there are two different kinds of exceptions: one to indicate that a list is empty and

another one to indicate that the current element is the last element. We could create a hierarchy of

exceptions with, say, a ListException as the base class and two other exceptions as subclasses. For

simplicity, however, we will create only one new exception class and use it to display the

corresponding error messages for the two types of possible errors:

public class ListException extends Exception

{ public ListException()

Java by Definition Chapter 7: Sequential Data Structures Page 45 of 112

Bert G. Wachsmuth DRAFT April 2009

 { super("List Exception"); }

 public ListException(String msg)

 { super(msg); }

}

With this exception in place we can now implement our List class. After all, we know the methods it

should contain and from the above picture we have determined that the class needs exactly two

fields, start and current. Here is the basic structure of the class, without implementing the

methods:

public class List

{ private Node start, current;

 public List()

 public void first() throws ListException { }

 public void next() throws ListException { }

 public void insert(Object o) { }

 public void remove() throws ListException { }

 public Object retrieve() throws ListException { }

 public void replace(Object o) throws ListException { }

 public boolean isEmpty() { }

 public boolean isLast() { }

}

Note that the fields start and current are private so that they are not visible to the user of the

class. Also, no reference is made to any sequence of nodes internal to the list. First, let's consider the

image of an empty list:

currentstart

Figure 8.1.6: Picture of a valid empty List

That picture can be translated into the corresponding List constructor code:

public List()

{ start = current = null; }

Based on that picture and code we can easily implement the isEmpty method:

public boolean isEmpty()

{ return (start == null); }

Next, let's try the isLast method: it should return true if the current element of the list is the last

element. We have defined the last element as that one without a successor, or that one whose next

reference is null. Hence, our method needs to check whether the next reference of the node

referenced by current is pointing to null. Therefore, our method looks like:

public boolean isLast()

{ if (current != null)

 return (current.next == null);

 else

 return false;

}

Note that this method returns true if the current node is the last node (i.e. current.next points to

null), or if the list is empty (i.e. current points to null). It does not throw an exception.

Java by Definition Chapter 7: Sequential Data Structures Page 46 of 112

Bert G. Wachsmuth DRAFT April 2009

The retrieve and replace methods are also easy to implement. They simply return or modify the

data piece of the node pointed to by current:

public Object retrieve() throws ListException

{ if (start == null)

 throw new ListException("retrieving data from empty list");

 else

 return current.data;

}

public void replace(Object obj) throws ListException

{ if (start == null)

 throw new ListException("replacing data in empty list");

 else

 current.data = obj;

}

The "cursor movement" operations first and next are also simple to implement:

public void first() throws ListException

{ if (start == null)

 throw new ListException("finding first in empty list");

 else

 current = start;

}

public void next() throws ListException

{ if (start == null)

 throw new ListException("finding next in empty list");

 else if (current.next == null)

 throw new ListException("no next element available");

 else

 current = current.next;

}

That leaves the operations insert and remove, which indeed are the difficult ones to implement. In

fact, they are difficult to implement in part because they are not clearly defined:

 If we insert an element, where exactly should it be inserted in our list?

 After insertion, which element should be the current one?

 If we remove an element, which one should we actually remove?

 After removing, say, the current element, which one should become the new current element?

There are several possible answers to these questions (see exercises), and since our definition of a

List does not mention these details, any possibility could be implemented. We will choose the

following:

 A new element is always inserted right after the current one, and it should become the new

current element after the insertion is complete.

 The element to be removed is always the current one, and its successor will become the new

current element. If the element to be removed is the last one, we make the first element, if

any, the current element. If the element to be removed is the only one in the list, our list

should become a proper empty list.

Now that it is clear how insertion and deletion should work in theory, let's look at a picture of the

insertion procedure in a generic situation:

Java by Definition Chapter 7: Sequential Data Structures Page 47 of 112

Bert G. Wachsmuth DRAFT April 2009

currentstart

(A) List before insertion

currentstart

node
(B) New object wrapped into node

currentstart

node
(C) List with Node pointers adjusted

currentstart

node

(D) Final list after insertion

Figure 8.1.7: Inserting a new Node into a generic List

Thus, our insertion method consists of three stages, starting with the original list (A):

 (B): The input Object is wrapped into a new Node referenced by the variable node

 (C): The references of the next field of the current node as well as of the new node are

modified to create the impression of the new node being seamlessly integrated into the list

 (D): The reference that current contains is reset to point to the newly arrived node in the

list.

This translates immediately into the following programming steps:

public void insert(Object obj)

{ Node node = new Node (obj); // step B

 node.next = current.next; // step C

 current.next = node;

 current = node; // step D

}

However, this code results from the above picture, which depicted a "generic" situation. We should

also check whether our code works in "extreme" cases. First, of course, we need to identify these

extreme cases.

In the generic situation, the list contains some elements and current points to an "inside" element.

The extreme cases, therefore, are:

a) current points to the first element

b) current points to the last element

c) the list is empty, i.e. current and start point to null

We need to verify - and if necessary adjust - our code in these situations before we feel confident that

it will work as advertised.

Case (a): start and

current both point to

the first node:

currentstart

Figure 8.1.8: List insertion where start and current are the same

Java by Definition Chapter 7: Sequential Data Structures Page 48 of 112

Bert G. Wachsmuth DRAFT April 2009

Our code creates the new node correctly, then sets the next reference of node to current.next, i.e. to

the second node. The reference current.next, currently pointing from the first to the second node, is

reset to point to the new node. Finally, the current reference is changed to point to node, so that the

new node is indeed correctly inserted at the second position.

Case (b): current

points to the last node

in the list.

currentstart

Figure 8.1.9: List insertion where start is first and current is last node

Again, the new node is created, then its next reference is adjusted to point to null (which is where

current.next points to). Then current.next is adjusted to point to node and finally current is set to

point to node. That will correctly insert the new node at the end of the list, and the list is properly

terminated with a node whose next reference points to null as before.

Case (c): the list is empty,

i.e. both start and current

point to null.

currentstart

Figure 8.1.10: List insertion into an empty list

The new node is created and its next reference is set to point to current.next. However, since

current points to null there is no current.next and the program will crash. Also, in this case the

start reference will need to change, which does not happen in our current code. Therefore, we need

to adjust our code to treat this particular situation separately:

public void insert(Object obj)

{ Node node = new Node(obj);

 if (current != null) // list is not empty

 { node.next = current.next;

 current.next = node;

 }

 else // list is empty

 start = node;

 current = node; // do this in both cases

}

This new insert method will perform correctly in every situation.

Finally, we have to take care of removing a node from the list. First, let's look at a picture of the

generic situation. Rrecall that we want to remove the current element from the list and reset

current to the node succeeding the removed one or to the first node if necessary:

currentstart

(A) List before removal

currentstart

prior

(B) Obtaining reference to prior node

Java by Definition Chapter 7: Sequential Data Structures Page 49 of 112

Bert G. Wachsmuth DRAFT April 2009

currentstart

prior

(C) List with pointers adjusted

start

prior

current

(D) Final list after removal

Figure 8.1.11: Removal of the current node from a generic list

The first thing we notice is that if we want to remove the list element pointed to by current from the

list, we must reset the reference of the previous element of the current one. However, we have no

reference to that element ! Therefore, we first need to create a utility method that returns a

reference to node prior to current, if any:

private Node findPrevious(Node now) throws ListException

{ if (now == start)

 throw new ListException("no previous element");

 else

 { Node cursor = start;

 while (cursor.next != now)

 cursor = cursor.next;

 return cursor;

 }

}

Note that this method is marked private, so it can only be used inside the List class. It will throw an

exception with appropriate error message if necessary, otherwise it will place a "cursor" at the first

element and reset that cursor to its successor node until the successor node equals the input node.

When it reaches that point, the loop is done and the method returns a reference to the node prior to

the input node now. Armed with this method, our remove method is simple:

public void remove() throws ListException

{ if (start == null)

 throw new ListException("removing from empty list");

 else

 { Node prior = findPrevious(current); // step B

 prior.next = current.next; // step C

 current = current.next; // step D

 }

}

Note that the node that used to be referenced by current before the removal has only been removed

from the list, not actually removed from memory. However, there is no reference to that node

anymore, so it is no longer accessible. In practical terms, the node has indeed disappeared even

though it is physically still in memory. But since no reference to that node exists the Java garbage

collection thread can clean it up automatically when convenient. We could manually start the

garbage collection process by adding a call to System.gc(); but that would not be economical. One of

the nice features of Java is this automatic garbage cleanup process and we should let it handle the

necessary details by itself.

The above code, of course, may not cover every possible situation. After all, it is again modeled after

the "generic" situation where the list contains some nodes and current points to a node in the

middle of the list. Just as before we need to examine our code to check that it applies to any extreme

situation and modify it if necessary. The extreme cases for this situation are:

Java by Definition Chapter 7: Sequential Data Structures Page 50 of 112

Bert G. Wachsmuth DRAFT April 2009

a) current points to the first node, i.e. we want to remove the first node

b) current points to the last node, i.e. we want to remove the last node

c) there is only one node, and both current and start point to it

Case (a): start and

current both point to

the first node:

currentstart

Figure 8.1.12: Node removal where start is equal to current

We notice immediately that our code will fail because the first thing it attempts to do is to find the

node prior to current. Since current does not have a predecessor, a ListException would be

thrown. We could modify our code to handle this particular situation as follows:

public void remove() throws ListException

{ if (start == null)

 throw new ListException("removing from empty list");

 else if (current == start)

 start = current = current.next;

 else

 { Node prior = findPrevious(current); // step B

 prior.next = current.next; // step C

 current = current.next; // step D

 }

}

This new code will cover the generic situation as well as case (a) in figure 8.1.12

Case (b): current

points to the last node

in the list.

currentstart

Figure 8.1.13: Node removal where start is first and current is last node

We will start with the above new code. Since current does not point to the first node, the last else

part of the if statement will execute. The node prior to current will be found, then its next

reference is adjusted to point to null since that's where current.next points to. Then current will

be changed to also point to null. That last step, of course, is incorrect. In fact, during our clarification

of the removal procedure we specified that if the last node is deleted from a list, current should

point to start after the process. Hence, we modify our code once again by appending another if

statement:

public void remove() throws ListException

{ if (start == null)

 throw new ListException("removing from empty list");

 else if (current == start)

 start = current = current.next;

 else

 { Node prior = findPrevious(current); // step B

 prior.next = current.next; // step C

 current = current.next; // step D

 }

 if (current == null)

 current = start;

}

Java by Definition Chapter 7: Sequential Data Structures Page 51 of 112

Bert G. Wachsmuth DRAFT April 2009

Now the code will work in the generic situation, as well as in case (a), figure 8.1.12, and (b), figure

8.1.13.

Case (c): current and

start both point to the

only node in the list.

currentstart

Figure 8.1.14: List removal where start and current point to only node

Since start and current both point to the same (and only) node, the first part of the if statement

applies. But since current.next points to null, both start and current will be reset to also point to

null. That results in a proper empty list, hence our code will cover this case just fine.

Our removal method, therefore, will now work in every possible situation. Since that was the last

method we needed to implement, our List class is finished. For easy reference, here is the entire

class once again23:

public class List

{ private Node current;

 private Node start;

 public List()

 { start = current = null; }

 public boolean isEmpty()

 { return (start == null); }

 public boolean isLast()

 { if (current != null)

 return (current.next == null);

 else

 return false;

 }

 public void first() throws ListException

 { if (start == null)

 throw new ListException("no first in empty list");

 else

 current = start;

 }

 public void next() throws ListException

 { if (start == null)

 throw new ListException("finding next in empty list");

 else if (current.next == null)

 throw new ListException("no next element available");

 else

 current = current.next;

 }

 public Object retrieve() throws ListException

 { if (start == null)

 throw new ListException("retrieving data from empty list");

 else

 return current.data;

 }

 public void replace(Object obj) throws ListException

 { if (start == null)

 throw new ListException("replacing data in empty list");

 else

 current.data = obj;

 }

23

 The class will only compile if ListException and Node exist in the same directory.

Java by Definition Chapter 7: Sequential Data Structures Page 52 of 112

Bert G. Wachsmuth DRAFT April 2009

 public void remove() throws ListException

 { if (start == null)

 throw new ListException("removing from empty list");

 else if (current == start)

 start = current = current.next;

 else

 { Node prior = findPrevious(current);

 prior.next = current.next;

 current = current.next;

 }

 if (current == null)

 current = start;

 }

 public void insert(Object obj)

 { Node node = new Node(obj);

 if (current != null)

 { node.next = current.next;

 current.next = node;

 }

 else

 start = node;

 current = node;

 }

 private Node findPrevious(Node now) throws ListException

 { if (now == start)

 throw new ListException("no previous element");

 else

 { Node cursor = start;

 while (cursor.next != now)

 cursor = cursor.next;

 return cursor;

 }

 }

}

Before we discuss some benefits of and variations on this particular implementation, let's take a look

at how this List class can be used.

Example 8.1.8:

Use a list to store two double numbers, then retrieve them again and print out the sum

of these numbers.

This seems easy enough: create an empty list, insert two double numbers, retrieve them again and

add them. So, we might try the following:

public class ListTest

{ public static void main(String args[])

 { List list = new List();

 list.insert(10.0);

 list.insert(20.0);

 /* code to retrieve and add the numbers */

 }

}

But that code will not compile with error messages as in figure 8.1.15:

Java by Definition Chapter 7: Sequential Data Structures Page 53 of 112

Bert G. Wachsmuth DRAFT April 2009

Figure 8.1.15: Error message when compiling original ListTest class

Indeed, our list can store the Java type Object or any type that derives from Object. Since every

class extends Object except for the basic data types, these types can not be stored directly in our list.

But the basic data types have corresponding wrapper classes that can wrap the value of a basic type

into a proper Java Object. Hence, we modify our code as follows:

public class ListTest

{ public static void main(String args[])

 { List list = new List();

 list.insert(new Double(10.0));

 list.insert(new Double(20.0));

 try

 { list.first();

 double x = list.retrieve();

 list.next();

 double y = list.retrieve();

 System.out.println(x + y);

 }

 catch(ListException le)

 { System.err.println(le);

 }

 }

}

However, our class again does not compile, this time with error messages similar figure 8.1.16:

Figure 8.1.16: Error message when compiling second version of ListTest

Since we insert the type Double into the list we can not expect to retrieve a double type. But if we

change our code once again by changing the types of x and y to Double instead of double:

Java by Definition Chapter 7: Sequential Data Structures Page 54 of 112

Bert G. Wachsmuth DRAFT April 2009

public class ListTest

{ public static void main(String args[])

 { List list = new List();

 list.insert(new Double(10.0));

 list.insert(new Double(20.0));

 try

 { list.first();

 Double x = list.retrieve();

 list.next();

 Double y = list.retrieve();

 System.out.println(x + y);

 }

 catch(ListException le)

 { System.err.println(le);

 }

 }

}

we get even more error messages than before:

Figure 8.1.17: Error message when compiling third version of ListTest

We insert the type Double into the list, and since Double extends Object the insertion works fine.

However, the retrieval method always delivers an Object. If we know that the Object is really a

Double, then we could use type-casting to change the types, as in:

Double x = (Double)(list.retrieve());

list.next();

Double y = (Double)(list.retrieve());

System.out.println(x + y);

Now, of course, we can not add x and y, because they are of type Double, not double, so we still have

a problem (which we could overcome with the doubleValue() method of the Double class).

At this point, we should step back and think about the problem before attempting quick fixes. What

we did create was a generic List class that can store any type of Object. However, in our case we

want to store a particular data type, namely one or more double. Hence, we should create a new

class that extends List and is tailored to our particular needs instead of trying other, non-OOP

solutions.

Java by Definition Chapter 7: Sequential Data Structures Page 55 of 112

Bert G. Wachsmuth DRAFT April 2009

In our case we want our list to store and retrieve double values, so we first create a new type of list,

which will be very short yet completely functional:

public class DoubleList extends List

{ public void insert(double x)

 { super.insert(new Double(x)); }

 public double retrieveDouble() throws ListException
24

 { return ((Double)(super.retrieve())).doubleValue(); }

}

With this new List type it is – finally – as easy as we thought to solve the original problem:

public class ListTest

{ public static void main(String args[])

 { DoubleList list = new DoubleList ();

 list.insert(10.0);

 list.insert(20.0);

 try

 { list.first();

 double x = list.retrieveDouble();

 list.next();

 double y = list.retrieveDouble();

 System.out.println(x + y);

 }

 catch(ListException le)

 { System.err.println(le);

 }

 }

}

This solution is actually quite common when dealing with a List. We could use either type-casting

when retrieving objects of a particular type or we could extend our list to adjust the insert and

retrieve mechanism so that they use exactly the types we are interested in at that time. Note that

in our DoubleList the insert method is overloaded, but we can not overload the retrieve message

because of different return types.

Example 8.1.9:

Use the DoubleList created in example 8.1.8 to find the sum of the first 200 integers

(which we know from example 29 to be equal to 20100).

Assuming that we created the DoubleList class in example 8.1.8, the code should be easy: we insert

the numbers as double in a loop, then retrieve them in a second loop to compute their sum. The first

loop can be a for loop, but the retrieval part is more complicated. We first make sure that we start at

the beginning of the list by calling on the first method. Then we use a while loop to cycle through

the elements in the list until we have reached the last one. Each time we use retrieveDouble to get

an element from the list and next to advance the current element by one. These calls must be

embedded in a try-catch block to catch any list exceptions. Here is our first attempt, which requires

the classes Node, ListException, List, and DoubleList to be present:

public class SumOfList

{ public static void main(String args[])

 { DoubleList list = new DoubleList();

24

 We can not overload the retrieve method because the new method is supposed to return a double. Overloaded

methods, however, must have the same return type. For the insert method overloading works fine.

Java by Definition Chapter 7: Sequential Data Structures Page 56 of 112

Bert G. Wachsmuth DRAFT April 2009

 for (int i = 0; i < 100; i++)

 list.insert((double)(i+1));

 try

 { double sum = 0.0;

 list.first();

 while (!list.isLast())

 { sum += list.retrieveDouble();

 list.next();

 }

 System.out.println("Sum of 1 to 200 is: " + sum);

 }

 catch(ListException le)

 { System.err.println("List exception: " + le); }

 }

}

The code will compile fine and produce an answer as shown in figure 8.1.18, but the answer is

incorrect.

Figure 8.1.18: Results of incorrect SumOfList

A quick comparison against the correct answer of 20100 shows that the last number 200 has not been

added. In fact, our while loop stops when the current element of the list is the last one, but it does

not process the last element. Therefore, we must do that separately after the while loop. Adding a

line to our SumOfList class will create the correct answer:

public class SumOfList

{ public static void main(String args[])

 { DoubleList list = new DoubleList();

 for (int i = 0; i < 100; i++)

 list.insert((double)(i+1));

 try

 { double sum = 0.0;

 list.first();

 while (!list.isLast())

 { sum += list.retrieveDouble();

 list.next();

 }

 sum += list.retrieveDouble();

 System.out.println("Sum of 1 to 200 is: " + sum);

 }

 catch(ListException le)

 { System.err.println("List exception: " + le); }

 }

}

Figure 8.1.19: Results of correct SumOfList

Java by Definition Chapter 7: Sequential Data Structures Page 57 of 112

Bert G. Wachsmuth DRAFT April 2009

Example 8.1.9 shows how to process all elements of a List in a while loop, but it was not very

enlightening otherwise. The next example will illustrate how to use a List in a complete program

that will remove the size restrictions that used to be imposed by an array. It will also show how to

take advantage of polymorphism when working with lists.

Example 8.1.10:

XXX – Removed the MyDraw Applet in chapter 4 XXX In chapter four, example 4.6.7, we

created a simple drawing applet called MyDraw. It could draw rectangles and circles as

well as resize and move the last shape drawn. The applet used a hierarchy of shapes,

stored the shapes in an array, and used polymorphism to select the methods appropriate

for drawing a particular shape. At that time we simply restricted our applet so that it

could draw up to MAX_FIGS = 100 shapes. That is certainly sufficient for a simple

program but won't do for a professional-strength application. Modify the MyDraw program

so that it uses a List instead of an array for a – basically – unlimited number of

shapes.25

First, let's recall the essential ingredients of that program. It used a hierarchy of Shapes as follows:

public abstract class Shape

{ /* various abstract method */ }

public class Rectangle extends Shape

{ /* implements the abstract methods specific to a rectangle */ }

public class Circle extends Shape

{ /* implements the abstract methods specific to a circle */ }

The highlights of the applet code were as follows:

public class MyDraw extends Applet implements ActionListener

{ private final int MAX_FIGS = 100;

 private Shape figures[] = new Shape[MAX_FIGS];

 private int currentFig = -1;

 /* various other fields, see original code */

 public void init()

 { /* defines the layout for the applet, see original code */ }

 public void actionPerformed(ActionEvent e)

 { Object target = e.getSource();

 if (target == drawRectangle)

 handleNewFigure("rectangle");

 else if (target == drawCircle)

 handleNewFigure("circle");

 else if (currentFig >= 0)

 { if (target == left)

 figures[currentFig].moveLeft(units);

 else if (target == right)

 figures[currentFig].moveRight(units);

 else if (target == up)

 /* more code calling on other methods of a Shape */

 }

 repaint();

 }

25

 The size of a List is not unlimited. It is rather limited by the available memory provided by the operating system.

More sophisticated versions of a List class could also make use of available disk space to swap currently unused

elements of the list to disk, giving that List an even greater but still limited possible size.

Java by Definition Chapter 7: Sequential Data Structures Page 58 of 112

Bert G. Wachsmuth DRAFT April 2009

 public void paint(Graphics g)

 { if (currentFig >= 0)

 for (int i = 0; i < currentFig+1; i++)

 figures[i].draw(g);

 }

 private void handleNewFigure(String figure)

 { if (currentFig < MAX_FIGS-1)

 { currentFig++;

 int x = getSize().width / 2;

 int y = getSize().height / 2;

 if (figure.equals("rectangle"))

 figures[currentFig] = new Rectangle(x,y,x+20,y+20,Color.red);

 else if (figure.equals("circle"))

 figures[currentFig] = new Circle(x, y, 10, Color.blue);

 }

 }

}

If we want to convert this applet so that it uses a List instead of an array we should first create an

appropriate List specific to dealing with shapes. Therefore, we will create ShapeList extending List

with a retrieve routine specific to our shapes. The new retrieve method will return Shape but the

list should contain Rectangle or Circle objects. After all, Shape is abstract and can not be used to

instantiate any objects.

We could use the instanceof operator to check for the specific type of object in the list and type-cast

the object appropriately before returning it:

public class ShapeList extends List

{ public Shape retrieveShape() throws ListException

 { Object obj = super.retrieve();

 if (obj instanceof Rectangle)

 return (Rectangle)obj;

 else if (obj instanceof Circle)

 return (Circle)obj;

 else

 throw new ListException("unknown object in list");

 }

}

This only works because Rectangle and Circle are subclasses of Shape, so that if the method type-

casts and returns a Rectangle it does return a Shape as well because every Rectangle is also a

Shape. However, this is overkill: we can leave it to polymorphism to figure out the appropriate type

of an object when necessary. In other words, our retrieveShape method can be simplified to:

public class ShapeList extends List

{ public Shape retrieveShape() throws ListException

 { return (Shape)super.retrieve(); }

}

The standard insert method can insert objects of type Shape just fine so we do not need to override

it. When it inserts a Rectangle or Circle or any other object that extends Shape, the inserted object

itself is of the correct type. As long as we type-cast it into a Shape when retrieving it, polymorphism

can pick up on the true nature of the object and select the appropriate methods.

Armed with this new List we can easily modify the MyDraw applet to use a ShapeList instead of an

array. In fact, our code will become somewhat easier since we can leave the actual details of keeping

track of the current object etc. completely to the ShapeList class. Here is the new code, with the

modified code displayed in bold and italics:

Java by Definition Chapter 7: Sequential Data Structures Page 59 of 112

Bert G. Wachsmuth DRAFT April 2009

public class MyDraw extends Applet implements ActionListener

{ /* we don't need MAX_FIGS and currentFig */

 private ShapeList figures = new ShapeList();

 /* various other fields as before, see original code */

 public void init()

 { /* defines the layout for the applet, see original code */ }

 public void actionPerformed(ActionEvent e)

 { Object target = e.getSource();

 if (target == drawRectangle)

 figures.insert(new Rectangle(getSize().width/2-10,

 getSize().height/2-10,

 getSize().width/2+10,

 getSize().height/2+10, Color.red));

 else if (target == drawCircle)

 figures.insert(new Circle(getSize().width/2,

 getSize().height/2, 10, Color.blue));

 else

 { try

 { if (target == left)

 figures.retrieveShape().moveLeft(units);

 else if (target == right)

 figures.retrieveShape().moveRight(units);

 else if (target == up)

 /* more code as above calling on other methods of Shape */

 }

 catch(ListException le)

 { System.err.println(le); }

 }

 repaint();

 }

 public void paint(Graphics g)

 { if (!figures.isEmpty())

 { try

 { figures.first();

 while (!figures.isLast())

 { figures.retrieveShape().draw(g);

 figures.next();

 }

 figures.retrieveShape().draw(g);

 }

 catch(ListException le)

 { System.err.println(le + " nothing to draw"); }

 }

 }

}

The paint method uses a while loop similar to the one in example 8.1.9, processing the last item in

the list separately. The handleNewFigure method is no longer necessary.

To summarize, in our original MyDraw applet we had to keep track of the shapes "manually" and we

were restricted to a fixed number of shapes. Using our new data structure we can leave these details

to the ShapeList class and we do not need to impose an artificial limit on the number of shapes.

Polymorphic selection of the drawing methods appropriate to the particular shapes works just as

before. Thus, this applet is "better" than before, and in the process the code seems to have got easier,

too. Of course, we have simply "moved" some parts of the old code into the new List class, which is

actually much more complex than an array. But the List class is entirely reusable, so if we spend

some time once, we can use that to our benefit every time we make use of List.

Java by Definition Chapter 7: Sequential Data Structures Page 60 of 112

Bert G. Wachsmuth DRAFT April 2009

Our list implementation using nodes to store objects is only one possible implementation of the

abstract data type List. Another commonly used variation is:

Definition 8.1.11: Double-Linked List

A double-linked list is a list implementation that uses "double" Nodes instead of "single" Nodes.

A double Node has two reference variables in addition to storing data, one to point to a successor

node and a second one to point to a predecessor. A double-linked list offers performance benefits

over a standard linked list, paid for by additional memory requirements per node and more

complex implementations of the list methods. The details are sketched in figures 8.1.20 and

8.1.21.

"Double-linked" list: this implementation uses a Node with two reference variables, one to point to

the successor node and the second to point to the predecessor node:

nextdataprev

Figure 8.1.20: Image of a double-linked Node

With this node one can implement a list that looks similarly to figure 8.1.21:

currentstart

Figure 8.1.21: Image of a double-linked List

To implement this type of list, the insert and remove methods will be most complicated, as before,

while the remaining methods will remain almost the same. The details are left as an exercise, but to

gain experience with double-linked nodes here is a simple example:

Example 8.1.12:

Write some code that will change the state of a double-linked list from the one depicted

in figure 8.1.22 on the left to the situation on the right. You do not need to create an

actual insert (or other) method, the code segment to adjust the various pointers will be

sufficient. You may, however, need to create double-linked Node class before you can use

such nodes.

currentstart

A CB

List before inserting String "X"

currentstart

A CXBB

List after inserting String "X"

Figure 8.1.22: Inserting into a double-linked List

First, we need to create the DoubleNode class that contains a field for an object and two fields for

reference variables to the predecessor and successor node. As before, we will make those fields

protected for simplicity:

public class DoubleNode

Java by Definition Chapter 7: Sequential Data Structures Page 61 of 112

Bert G. Wachsmuth DRAFT April 2009

{ protected Object data;

 protected DoubleNode next;

 protected DoubleNode prior;

 public DoubleNode()

 { data = null;

 next = prior = null;

 }

 public DoubleNode(Object _data)

 { data = _data;

 next = prior = null;

 }

}

Next, our code needs to create a new node containing the string "X" and adjust all necessary pointers

so that the new data will fit into the list as depicted in figure 8.1.22. That is simple as long as we can

give names to the reference variables we want to adjust:

currentstart

A CB

X
node

current.next

current.next.prior

node.next

node.prior

Figure 8.1.23: Names for nodes in double-linked List

Once everything has a name, the code is - hopefully - easy:

1. Create new node with appropriate data section:

Node node = new DoubleNode("X");

2. Adjust the various pointers to insert node right before current:

node.prior = current;

node.next = current.next;

current.next.prior = node;

current.next = node;

3. Resetting current to point to the new node to finish the exercise:

current = node;

Without creating the actual insert method for a double-linked list it would be difficult test this code.

In fact, in the exercises you will be asked to create the entire double-linked implementation for a

List, so you can verify this code at that time.

Another frequent variation of a List implementation is based on arrays, yet maintains the dynamic

nature of a list:

Java by Definition Chapter 7: Sequential Data Structures Page 62 of 112

Bert G. Wachsmuth DRAFT April 2009

Definition 8.1.13: Array-Based List

An array-based list is a list implementation that uses an array instead of nodes to keep track of

the data. The class is constructed so that the array-based list still can grow and shrink

dynamically in size. The details are sketched below.

"Array-based" List: this implementation does not use nodes but an array to store objects.

1
2

0

4
3

42current

data
data

data - current
data

data - empty

44size

data - empty5
Figure 8.1.24: array-based List

The data is stored in an array of a fixed length (six in the

picture on the left). The field size indicates how many

data objects are actually stored at this time (four in the

picture, leaving two empty slots) and the field current

determines the object that is considered to be the current

one at the given time.

There are two basic versions to consider: one version uses an array of a fixed size, the other uses an

array that can grow and shrink dynamically. The "fixed size" version clearly is not interesting to us,

so we will briefly explain the "dynamic" version. In this implementation the List could contain four

fields: three integers (or longs) labeled current, growBy, and size, and one array of objects of some

initial length. It will contain all standard public method of the List class – differently implemented

– as well as two private methods grow and shrink:

public class List

{ private long current = -1; // points to current data object

 private long growBy = 5; // how much array should grow or shrink

 private long size = 0; // how many objects are currently stored

 private Object data[] = new Object[10];

 // standard List methods

 private void grow() { }

 private void shrink() { }

}

Initially this class can contain at most 10 objects. As soon as the 10th object is added (via the insert

method) the method grow is called by insert. That method will create a new array of size

data.length + growBy, copy all old data objects into that array and reset data to point to the new

and longer array. In this way, the array data can grow as needed and the List can accommodate as

many objects as available memory permits.

Similarly, if an object is removed from the list via the remove method, it will call shrink whenever

the actual number of objects indicated by the value of size falls below some number (say one third of

the current size of the array). The shrink method will create a new array of, say, half the size of the

current array, copy all objects from data into that array, and reset data to point to this new and

shorter array. In this way, the array will shrink as necessary, and the automatic garbage collection

thread can reclaim any unused memory.

If the List class is implemented this way, it would mean that occasionally a call to insert or remove

would take much more time than usually because the grow or shrink methods need to be called to

adjust the size of the array. If many elements need to be added in succession, it would be better to

make the array grow by more than 5 slots so that the grow method is not called too frequently. To

that end, one could add a utility method such as setIncrement that could change the value of

growBy, and perhaps a second constructor that would specify the initial size of the data array.

Java by Definition Chapter 7: Sequential Data Structures Page 63 of 112

Bert G. Wachsmuth DRAFT April 2009

We will not implement this class but leave the details as an exercise. However, the Java language

does provide a special class called Vector that works somewhat similar and we will briefly discuss

that class in definition 8.3.2.

The biggest disadvantage of this array-based implementation is that the data is stored in an array

and an array requires one contiguous block of memory. That limits the maximum possible size of the

array to the largest contiguous block of memory (at the most), not to all available memory. The node-

based implementation, on the other hand, can store its data in nodes spread around the available

memory, but it pays for this flexibility by adding an extra variable requiring memory to each data

element stored.

The advantages and disadvantages of these different implementations are summarized in the

following table:

 Advantage Disadvantage

standard List relatively easy to implement,

non-contiguous memory needs;

best used if list size is small or

if there are more insertions

than deletions

some extra memory needed per

node, slowness of findPrevious

and remove methods; not useful if

"random" items in list need to be

accessed frequently

double-linked List speed of findPrevious and

remove methods; best used if

speed is important

difficult to implement, extra

memory needs per node; not

useful if memory is "tight"

array-based List easy to implement, no extra

memory needs; best used if

there are frequent traversals of

the list relative to the number

of insertion and deletions;

quick access to all items

contiguous memory requirement,

slowness of growing and

shrinking; not useful if there are

frequent insertion and deletions

Table 8.1.25: Comparing implementation versions for List

Any class using one of these types of lists can, in principle, also use any other type without changing

any of the functional code of the class. Thus, a programmer can pick whatever representation of a

List seems to be the best solution for the particular situation.

At this point we should be convinced of the usefulness of a List. Other ADT's with more structure

can also be created that will be specialized but offer advantages in certain situations.

Queues

Queues are a special type of sequential structure where insertion of new objects takes place at one

end and retrieval takes place on the other end. Queues are used frequently behind the scenes in

operating systems, and in particular in networking systems. For example, many offices use printers

(especially high-speed, high-quality ones) that are networked so that more than one person can send

print requests to that printer. That poses a slight problem: one person might send a multi-page print

job to the printer and while the printer is about to print page 10, another person sends another print

job to the same printer. If both people had direct access to this printer, the first print job would now

be interrupted and the second job would start printing. Therefore, access to a printer is usually

mediated by what is called a "print queue". Instead of sending a print job directly to a printer across

the network, the print job is instead sent to a special holding area (usually a program running on a

Java by Definition Chapter 7: Sequential Data Structures Page 64 of 112

Bert G. Wachsmuth DRAFT April 2009

dedicated computer), and only that special program can access the printer directly. As print requests

are coming into that holding area, the data is stored at the end of a queue. The dedicated program,

on the other hand is the only one with access to the printer. It removes print jobs from the top of its

queue, sends them to the printer, waits until that job is finished, and sends the next job, if available.

The printer will not get confused as to which job to finish, because only one computer has access to

the printer. To the users it looks as if the printer prints their requests in an orderly "first-come, first-

serve" fashion.

Definition 8.1.14: ADT Queue

A queue is a sequential data structure where data is inserted at one end and removed from the

other end. Direct access to data residing in the middle of the queue is prohibited. The operations

that a queue should provide are as follows:

 to create an empty queue

 enqueue: to enter data into a queue on one end

 dequeue: to remove data from the queue on the other end and return the data

 peek: to retrieve the data on the removal end without removing it from the queue

 isEmpty: to check whether a queue is empty

A queue implements a "first-in, first-out", or FIFO access structure, i.e. the data that was entered

first into a queue is also retrieved first.

If we wanted to implement a Queue class, an easy solution would be to use our list as the superclass

and implement Queue as extending List. Then we would modify the insert and retrieve methods

to ensure that data is always inserted at the beginning of the list, say, and retrieved at the end.

However, that would not be in accordance with definition 8.1.14. If a class extends List, all public

methods of the List class are available. In particular, the methods first and next are available to

position the cursor anywhere in the list and data could be retrieved from anywhere in the queue.

Therefore, we will implement a Queue class entirely from scratch instead of extending List.

Two implementations are possible: one using Nodes and the second one using an array. But for a

Queue, there are only two essential operations (enqueue and dequeue) and traversal or search is not

allowed. Therefore, the node-based implementation (with single nodes) is the most advantageous

one:

Example 8.1.15:

Create a node-based implementation of a Queue that implements the methods enqueue,

dequeue, peek, and isEmpty as defined in definition 8.1.14.

You can use the Node class from definition 8.1.5 "as is", without any modifications.

Before we write any code, let's draw a picture of how our Queue would look like. We have two choices:

we could insert elements at the left and remove them from the right, or we can insert elements on

the right and remove them from the left. Correspondingly, let's look at two representations of a

queue (where tail denotes the side of the queue for insertion, head the side from removal):

Java by Definition Chapter 7: Sequential Data Structures Page 65 of 112

Bert G. Wachsmuth DRAFT April 2009

headtail

(a) Queue with insertion on the left

tailhead

(b) Queue with insertion on the right

Figure 8.1.26: Two choices of representing a node-based queue

To insert (enqueue) a new node as in figure 8.1.26, case (a), we need to adjust the tail variable to

point to the new node, as well as the next reference of the new node to point to the old tail of the

queue. To remove (dequeue) a node we need to reset the next reference of the node prior to head to

point to null. That operation therefore requires access to the second-last node and in our picture we

have no convenient access to that node. Several remedies are possible, but let's first consider the

second case.

To insert (enqueue) a node as in figure 8.1.26, case (b), the next reference of the tail node needs to

be adjusted to point to the new node. To remove (dequeue) a node in case (b), we need to reset head to

point to the second node in the queue. But now we do have convenient access to all necessary

reference variables, so that case (b) is preferred over case (a) and we will use that representation for

our Queue implementation.

Of course, a dequeue operation can only succeed if the queue is not empty. To ensure that this

condition is satisfied, we will employ a QueueException and throw it in case the dequeue method is

used on an empty queue. Therefore, we will first create a QueueException class, similar to

ListException above26:

public class QueueException extends Exception

{ public QueueException()

 { super("Queue Exception"); }

 public QueueException(String msg)

 { super(msg); }

}

Our Queue class so far looks as follows:

public class Queue

{ private Node head;

 private Node tail;

 public Queue() { }

 public void enqueue(Object obj) { }

 public Object dequeue() throws QueueException { }

 public Object peek() throws QueueException { }

 public boolean isEmpty() { }

}

To focus on the enqueue (insert) operation, let's first consider a picture of the generic situation:

26

 List, Queue, and Stack (defined later) are frequently used together, and it would probably be advantageous to

define QueueException and StackException as subclasses of ListException.

Java by Definition Chapter 7: Sequential Data Structures Page 66 of 112

Bert G. Wachsmuth DRAFT April 2009

tailhead

node

Queue just before enqueue

tailhead

node

Queue after enqueue finishes

Figure 8.1.27: Inserting a new node into a generic queue

Based on that picture, the enqueue method looks as follows:

public void enqueue(Object obj)

{ Node node = new Node(obj);

 tail.next = node;

 tail = node;

}

However, that does not take into account the extreme situations of an empty queue (head and tail

point to null) or of a queue where head and tail point to the same node:

tailhead

node

Queue with one element

head tail

node

Empty Queue

Figure 8.1.28: Inserting a new node into a queue in extreme cases

In the first case, our code will work just fine. In the second case we also need to adjust head so that

it, too, will point to the new and only node that was inserted. Hence, our final version of the enqueue

method is:

public void enqueue(Object obj)

{ Node node = new Node(obj);

 if (head == null)

 head = node;

 else

 tail.next = node;

 tail = node;

}

As for the dequeue method, we will again start with a generic picture:

tailhead

(a) Queue before removingl head

tailhead

(b) Queue after removing head

Figure 8.1.29: Removing a node from a generic queue

Based on that picture, our dequeue operation looks like this:

Java by Definition Chapter 7: Sequential Data Structures Page 67 of 112

Bert G. Wachsmuth DRAFT April 2009

public Object dequeue() throws QueueException

{ if (head == null)

 throw new QueueException("removing from empty queue");

 else

 head = head.next;

}

While that code will indeed remove the head node from the queue, it does not return its data value as

it should. In fact, as soon as we reset the head node, we have no possibility to access the value, so we

need to first return the value, then reset the head node. But that will not work either. As soon as we

execute a return statement the code after that statement will no longer execute, hence we can not

reset the head reference after return.

The solution will be to introduce a temporarily store the data at the head of the queue, then reset the

head reference, and finally return the appropriate data value. Therefore:

public Object dequeue() throws QueueException

{ if (head == null)

 throw new QueueException("removing from empty queue");

 else

 { Object data = head.data;

 head = head.next;

 return data;

 }

}

But again, this does not take into account the extreme

situation of having a queue with a single node. In that

case tail needs to be set to null as well so we adjust

our code as follows:

tailhead

Figure 8.1.30: Queue with one element

public Object dequeue() throws QueueException

{ if (head == null)

 throw new QueueException("removing from empty queue");

 else

 { Object data = head.data;

 head = head.next;

 if (head == null)

 tail = null;

 return data;

 }

}

The remaining methods are easy so here is the complete Queue class:

public class Queue

{ private Node head;

 private Node tail;

 public Queue()

 { head = tail = null; }

 public void enqueue(Object obj)

 { Node node = new Node(obj);

 if (head == null)

 head = node;

 else

 tail.next = node;

 tail = node;

Java by Definition Chapter 7: Sequential Data Structures Page 68 of 112

Bert G. Wachsmuth DRAFT April 2009

 }

 public Object dequeue() throws QueueException

 { if (head == null)

 throw new QueueException("removing from empty queue");

 else

 { Object data = head.data;

 head = head.next;

 if (head == null)

 tail = null;

 return data;

 }

 }

 public Object peek() throws QueueException

 { if (head == null)

 throw new QueueException("peeking into empty queue");

 else

 return head.data;

 }

 public boolean isEmpty()

 { return (head == null); }

}

We will provide some more elaborate examples in the next section after introducing stacks. For now,

here is a simple example:

Example 8.1.16:

Create a (fake) PrintJob class that stores the name of the person submitting the job and

the date the job was submitted. Make sure the class includes a toString method. Then

insert a few print jobs into a queue, wait a few seconds, then retrieve the print jobs and

show their values on standard output, noting the time the job was retrieved from the

queue. Try to remove one more print job from the queue than is actually present to test

the exception handling of our class.

The first part of this example is the creation of the PrintJob class. That class contains no surprises:

it uses a field of type String for the name of the person submitting the job, and a second field of type

Date for the date and time the job was created. Both values can be set in the constructor, and can be

displayed with the toString method:

import java.util.Date;

public class PrintJob

{ private String name;

 private Date date;

 public PrintJob(String _name, Date _date)

 { name = _name;

 date = _date;

 }

 public String toString()

 { return (name + " (" + date + ")"); }

}

Recall that the toString method of the Date class is used automatically to convert a date to an

appropriate String representation in the toString method.

The main program is also straightforward, with the exception, perhaps, of how to make our program

"wait for a few seconds". But all programs in the JVM run in a thread and threads, as we know from

Java by Definition Chapter 7: Sequential Data Structures Page 69 of 112

Bert G. Wachsmuth DRAFT April 2009

chapter 5, can be put to sleep. In fact, there is a static method of the Thread class called sleep that

will put the currently executing thread to sleep for the indicated period of time.27 Now we have all

ingredients for our program:

import java.util.Date;

public class PrintQueueTest

{ public static void main(String args[])

 { Queue printer = new Queue();

 printer.enqueue(new PrintJob("Bert Wachsmuth", new Date()));

 printer.enqueue(new PrintJob("Jane Doe", new Date()));

 try

 { Thread.sleep(2000);

 while (!printer.isEmpty())

 { System.out.println("Printing starts: " + (new Date()));

 System.out.println("\tJob: " + printer.dequeue());

 }

 System.out.println("Printing starts: " + (new Date()));

 System.out.println("\tJob: " + printer.dequeue());

 }

 catch(InterruptedException ie)

 { System.err.println(ie); }

 catch(QueueException qe)

 { System.err.println(qe); }

 }

}

The insertion of the print jobs is straightforward. To remove and display the information, we have

embedded the call to dequeue in a try-catch block catching an InterruptedException as well as a

QueueException. To print out a PrintQueue as a String we do not have to type-cast the Object

returned by dequeue into PrintJob. After all, PrintJob, like every class, extends Object, and Object

contains a toString method. Hence, polymorphism will select the toString method appropriate for a

PrintJob automatically. We do not have to call on the toString method explicitly since that happens

automatically in System.out.println. Figure 8.1.31 shows the output resulting from this program:

Figure 8.1.31: Output of PrintQueueTest program

There are several other useful variations of a queue: first of all, a Queue could be implemented using

an array, but as we mentioned before there would be little or no performance gain in that. Another

variation of a Queue, however, is quite useful: a priority queue. A priority queue is a queue that does

not follow a FIFO retrieval mechanism but instead orders the data according to some priority such

that the item to dequeue always has equal or higher priority than every other item in the list. In case

of equal priority, the item that was inserted first will be dequeued first.

27

 See chapter 5, table 5.2.3.

Java by Definition Chapter 7: Sequential Data Structures Page 70 of 112

Bert G. Wachsmuth DRAFT April 2009

Definition 8.1.17: ADT Priority Queue

A priority queue is a sequential structure containing items sorted according to some priority.

Items are inserted via the enqueue method and removed via the dequeue method. Every item

dequeued from the priority queue has a priority at least as high as every item still remaining in

the priority queue. Among items of equal priority, they are dequeued in "first-in, first-out" order.

To implement a priority queue we could extend Queue. We would only need to override the enqueue

method so that it does not add object at the tail end of the queue but instead according to the

priority of the new item compared to those already in the queue. We need to be able to compare

items to be inserted against those already in the list, so we need to make sure that all items in the

priority queue are comparable. The most flexible way to achieve that is via an interface. In fact, in

chapter 7 we created the Searchable interface which will do perfectly fine in this case. Recall that

interface from example 7.3.7:

public interface Searchable

{ public abstract boolean isEqualTo(Searchable obj);

 public abstract boolean isLessThan(Searchable obj);

 public abstract boolean isGreaterThan(Searchable obj);

}

So, our class would start out like this:

public class PriorityQueue extends Queue

{ public void enqueue(Searchable obj)

 { /* code to insert according to priority */ }

}

to enqueue objects that implement the Searchable interface. However, to implement the new

enqueue method we need to be able to access at least the head reference to start searching the

priority queue from the beginning for the correct position for the insertion. But head is marked as

private in Queue so PriorityQueue does not have access to it. Therefore, we either modify the Queue

class to mark head (and tail) as protected or we copy the code from the Queue class to the

PriorityQueue class. For simplicity, we will designate both head and tail fields of the Queue class as

protected:

public class Queue

{ protected Node head;

 protected Node tail;

 /* remaining code as before */

}

Now we have access to these fields in our PriorityQueue and the first order of business is to find the

position where the new node should fit, according to its priority. The following code segment will

accomplish this:

Node cursor = head;

while ((cursor != null) &&

 (!((Searchable)cursor.data).isLessThan(obj)))

 cursor = cursor.next;

It places a reference variable cursor at the head of the queue, then moves it from the current node

to its successor as long as the cursor object is not less than the new object, or the end of the queue

Java by Definition Chapter 7: Sequential Data Structures Page 71 of 112

Bert G. Wachsmuth DRAFT April 2009

has been reached. At the end of that loop, cursor will point either to null or to the first node with

priority less than then priority of obj. Next, we have to consider four cases:

Case 1: the queue is empty (head points to null)

We can insert the node by pointing head and tail to the new (and only) node.

Case 2: obj has bigger priority than any other object in the queue (cursor points to head)

We need to insert the new node at the beginning of the queue (by changing head)

Case 3: obj has smaller priority than any other object in the queue (cursor points to null)

We need to insert the new node at the end of the queue (by changing tail)

Case 4: obj has priority less than the first and bigger than the last node

We need to insert the new object at the appropriate spot in the middle of the queue

Cases 1 to 3 are relatively easy. However, in the fourth case we need to insert the new node before

the one pointed to by cursor. Thus, we need to modify the above loop to keep a reference variable

that always points to the predecessor of cursor:

Node cursor = head, prior = head;

while ((cursor != null) &&

 (!((Searchable)cursor.data).isLessThan(obj)))

{ prior = cursor;

 cursor = cursor.next;

}

In other words, the variable prior always points to the predecessor of cursor as soon as the loop

starts.

With the help of these explanations and the above code segment, it should not be hard to finish the

enqueue method for the PriorityClass. We will leave the details as an exercise.

We will introduce further examples in the next section when we know about another abstract data

type called a Stack.

Stacks

While a Queue is a FIFO (first in, first out) structure, our next data type will represent a LIFO (last

in, first out) structure, i.e. a structure where the node last inserted is the first to be retrieved. One

such structure is called a Stack:

Definition 8.1.18: ADT Stack

A stack is a sequential data structure where data is inserted on one end and removed from the

same end. Direct access to data residing in the middle of the stack is prohibited. The operations

that a stack should provide are as follows:

 to create an empty stack

 push: to enter data into a stack

 pop: to remove data from the stack

 peek: to retrieve the data without removing it from the stack

 isEmpty: to check whether a stack is empty

Java by Definition Chapter 7: Sequential Data Structures Page 72 of 112

Bert G. Wachsmuth DRAFT April 2009

A stack implements a "last-in, first-out", or LIFO access structure, i.e. the data that was entered

last into the stack is retrieved first.

In some sense, a stack is the opposite of a queue: in a queue, what goes in first also comes out first,

whereas in a stack what is inserted last comes out first. At first glance it might seem that a queue is

a "sensible" or "fair" structure with many uses but a stack is an "unfair" structure whose usefulness

is not clear. Of course, the question of fairness is not relevant to data structures. As it will turn out a

stack has indeed many uses and it can be quite helpful in complicated situations such as

understanding how recursion works. And just as queues, stacks are used frequently in computer

operating systems but they are usually much less obvious than queues.

One frequent use of a real-world stack-like structure can be found in many cafeterias. The

mechanism that is used to dispense plates and trays allows you to take a plate from the top of a pile,

then a spring pushes the remaining plates up a little so that the top plate is available for the next

person to take. Indeed, that mechanism is LIFO: the last plate that was put on the pile is the first

one to be taken out. Hence, such a mechanism is a good visual aide to imagine a stack.

Another use of a stack is implemented in most popular web browsers: when you visit pages on the

web, a web browser usually allows you to go "back" to the previously visited pages. And in fact you

always go back to the last page visited. Thus, a stack is used to keep track of the pages so that the

page last inserted is removed first.

However, before determining other possible uses of stacks, we need to implement the appropriate

class. Just as we did not create Queue as an extension of List, we will also design our Stack class

from scratch.28 Internally, a Stack will look somewhat similar to a Queue, but because of its LIFO

mechanism the particular implementation will be different and its uses will be entirely different.

Example 8.1.19:

Create a node-based implementation of a Stack that implements the methods push, pop,

peek, and isEmpty as defined in definition 8.1.18.

You can use the Node class from definition 8.1.5 "as is", without any modifications.

As usual, before attempting the actual implementation of the Stack class we will try to create an

appropriate visual representation of a stack. Taking the above image of the plate-dispensing

mechanism as a guide, we will visualize a stack as follows:

top

Instead of visualizing the nodes horizontally as we did

for a List and Queue, we picture the nodes of a Stack

vertically, with the top of the stack being

appropriately at the top. Each node consists, as usual,

of two fields, one for data and another for a reference

to the next node. The next node, in this

representation, is the one immediately underneath

the current one. The bottom of the stack is designated

by a next reference pointing to null. The only field we

need inside a Stack class is a reference variable top

pointing to the top of the stack.

28

 In section 8.3 we will introduce the Java build-in Stack class, which does extend a list-like structure called

Vector. Technically speaking that should not be legal since that build-in stack will inherit operations that a stack

should not possess.

Java by Definition Chapter 7: Sequential Data Structures Page 73 of 112

Bert G. Wachsmuth DRAFT April 2009

Figure 8.1.32: Image of a Stack

Based on this picture and on the definition, we start our Stack class as follows:

public class Stack

{ private Node top;

 public Stack()

 public void push(Object obj)

 public Object pop() throws StackException

 public Object peek() throws StackException { }

 public boolean isEmpty()

}

Note that since the method pop and peek require the Stack to be not empty, they throw a

StackException if that condition is not met. The StackException class will be as usual:

public class StackException extends Exception

{ public StackException()

 { super("Stack Exception"); }

 public StackException(String msg)

 { super(msg); }

}

Next, we will implement the three easy methods peek, isEmpty, and the constructor:

public Stack()

{ top = null; }

public Object peek() throws StackException

{ if (top == null)

 throw new StackException("peeking into empty stack");

 else

 return top.data;

}

public boolean isEmpty()

{ return (top == null); }

As far as the push method goes, it will instantiate a new node containing obj, set its next reference

to the current top of the stack, then reset the top to point to the new node:

public void push(Object obj)

{ Node node = new Node(obj);

 node.next = top;

 top = node;

}

Note that this code will also work in the "extreme" case of an empty stack. The pop method is a little

trickier: It needs to return the data stored in the top node of the stack, as well as reset the top field.

However, if it first returns the data value, the method will finish and it can not reset the top of the

stack. On the other hand, if we first reset the top we can not return the correct data object because

nothing points to it any more. The solution, similar to the dequeue method of the Queue, is to

temporarily store the correct data object elsewhere, adjust the top pointer, then return the object via

its temporary reference:

public Object pop() throws StackException

{ if (top == null)

 throw new StackException("popping from an empty stack");

 else

Java by Definition Chapter 7: Sequential Data Structures Page 74 of 112

Bert G. Wachsmuth DRAFT April 2009

 { Object obj = top.data;

 top = top.next;

 return obj;

 }

}

Note that again this code works for a "generic" stack with several nodes as well as for the "extreme"

situation of a stack containing only one node.

For easy reference, here is the complete Stack class:

public class Stack

{ private Node top;

 public Stack()

 { top = null; }

 public void push(Object obj)

 { Node node = new Node(obj);

 node.next = top;

 top = node;

 }

 public Object pop() throws StackException

 { if (top == null)

 throw new StackException("popping from an empty stack");

 else

 { Object obj = top.data;

 top = top.next;

 return obj;

 }

 }

 public Object peek() throws StackException

 { if (top == null)

 throw new StackException("peeking into empty stack");

 else

 return top.data;

 }

 public boolean isEmpty()

 { return (top == null); }

}

Now let's test our new Stack class with an easy example:

Example 8.1.20:

Push the strings "Java", "by", "Definition" into a Stack, then pop them and print the

results. What will you see?

The code is simple, so to make it more interesting we will use a loop terminated by an exception

being thrown to pop all elements from a stack (even though that is not the best programming

practice)29:

public class StackTest

{ public static void main(String args[])

 { Stack s = new Stack();

 s.push("Java");

 s.push("by");

 s.push("Definition");

 try

29

 Compare with example 8.1.9.

Java by Definition Chapter 7: Sequential Data Structures Page 75 of 112

Bert G. Wachsmuth DRAFT April 2009

 { while (true)

 System.out.println(s.pop());

 }

 catch(StackException se)

 { System.out.println("Done."); }

 }

}

When you execute the program, you will see the words "Definition", "by", "Java" (and, of course,

"Done.") as in figure 8.1.33.

Figure 8.1.33: Output of StackTest class

That clearly shows the LIFO mechanism: the last string pushed onto the stack was "Definition",

and therefore it is the first one that is popped from the stack.

The above example illustrates one simple use of a stack: pushing elements, say, from a list to a stack,

then popping them from the stack will reverse the order of the elements. We can make use of that

fact for our next program:

Example 8.1.21:

Use a Stack and a Queue to test whether an input string is a palindrome. Recall that a

palindrome is a string that reads the same forwards and backwards. For example,

"racecar" is a palindrome, while "Java" is not.

Use the Console class from section 2.4, example 5, to obtain the string from the user (or,

for simplicity, hard-code the string into the class).

Our idea here is simple: we obtain the string from the user via the static readString method of the

Console class, then we enqueue the characters into a queue, and also push the characters into a

stack. Then we empty the queue and the stack one character at a time and compare them. If the

characters match every time, the string was a palindrome because the stack will reverse the order of

characters while the queue will keep the order.

To make matters a little simpler we will use the standard main method to fill the stack and queue

with characters, while using a separate method

boolean isPalindrome(Stack s, Queue q)

that checks whether a stack and a queue are the same when elements are removed in their

respective order.

A slight problem is that we can not enter single characters into a stack or queue because the basic

data type char is not an object. But as we mentioned before, we can use the wrapper class Character

Java by Definition Chapter 7: Sequential Data Structures Page 76 of 112

Bert G. Wachsmuth DRAFT April 2009

to wrap a char into an appropriate object.30 Here is the class so far, without implementing the

isPalindrome method:

public class CheckPalindrome

{ public static boolean isPalindrome (Stack s, Queue q)

 { /* code to be added later */ }

 public static void main(String args[])

 { Stack stack = new Stack();

 Queue queue = new Queue();

 System.out.print("Enter string: ");

 String string = Console.readString();

 for (int i = 0; i < string.length(); i++)

 { queue.enqueue(new Character(string.charAt(i)));

 stack.push(new Character(string.charAt(i)));

 }

 System.out.println("Palindrome: " + isPalindrome(stack, queue));

 }

}

The hard part is the method isPalindrome: we will use a loop that removes one element from the

stack and one from the queue, then type-cast them into Character. If the two characters do not

match, then we know we can not have a palindrome and the method returns false. Otherwise, the

loop continues until the stack is empty (the queue will be empty as well since we inserted the same

number of characters as into the stack). If the loop finishes without returning false, all characters

matched and we must have a palindrome. Therefore our method should now return true:

public static boolean isPalindrome(Stack s, Queue q)

{ while (!s.isEmpty())

 { try

 { Character c1 = (Character)s.pop();

 Character c2 = (Character)q.dequeue();

 if (!(c1.equals(c2)))

 return false;

 }

 catch(StackException se)

 { System.err.println(se); }

 catch(QueueException qe)

 { System.err.println(qe); }

 }

 return true;

}

Note that we can not compare the two Character objects c1 and c2 with the double-equal operator

since it would only check whether c1 and c2 are stored at the same memory location. Instead we

must use the equal method that is part of the Character class.

Here is another useful application using a stack: a program that checks whether opening and closing

parenthesis match. As you have probably noticed many times, it is not completely easy to properly

close all parentheses in mathematical (or Java) expressions. We want to create a little program that

checks whether each parenthesis that was opened is also closed, and no extra closing brackets are

present. In fact, such a program is part of every Java compiler: remove any of the brackets '{', '(', ')',

or '}' in the above class and compile to see the error message the Java compiler produces. That is, in

fact, no trivial undertaking. Decide quickly, for example, whether all parentheses match properly in

the expression below:

30

 Check the Java API for details on java.lang.Character.

Java by Definition Chapter 7: Sequential Data Structures Page 77 of 112

Bert G. Wachsmuth DRAFT April 2009

{[(a + (5 - c) + [d * (9 - 2)]}

Of course not: the third opening bracket '(' is unmatched, as well as the second bracket '['. We want

to create a method to decide exactly that.

Example 8.1.22:

Create a method that can decide whether all parentheses in an expression match

correctly. Our program should recognize square, round, and curly brackets, i.e. '[', '(', '{',

'}', ')', and ']'. Note: the actual meaning of the expression is irrelevant.

The basic problem is that while every opening bracket must have a corresponding closing bracket, we

don't know in which order the brackets are appearing. What we need to do is place all opening

brackets in a "holding area" until we find a closing bracket. That closing bracket must match the last

opening bracket, so we need to check the first closing bracket against the last bracket entered into

our holding area. In other words, our holding area must store opening brackets in a LIFO pattern,

hence a stack is the perfect structure. Our algorithm will be as follows:

 Go through the input string character by character.

 If we see an opening bracket, push it on a stack

 If we see a closing bracket, pop a bracket from the stack and check if they match.

 If they do not match, we are done - the parentheses do not match: a closing bracket

does not have a matching opening bracket.

 If the stack is currently empty, again we are done - the parentheses do not match:

there are not enough opening brackets for all closing ones.

 Otherwise, continue the process.

 If at the end of the process the stack is not empty, there was an opening bracket that did

not have a matching closing bracket, and again the parentheses do not match.

 Otherwise, if the stack is empty, and all characters were checked properly, all parentheses

did match properly.

Before we implement that method, let's create a utility class Parenthesis: that class should offer the

following capabilities:

 it should store a particular opening parenthesis

we use a field parens of type char and set it via the constructor

 it should be able to check whether a character is an opening parenthesis

we use a static method boolean isOpening(char parens)

 it should be able to check whether a character is a closing parenthesis

we use a static method boolean isClosing(char parens)

 it should check whether the input parenthesis closes the current opening one

we use a method boolean matches(char otherParens)

Thus, our Parenthesis class looks as follows:

public class Parenthesis

{ private char parens;

 public Parenthesis(char _parens)

 { parens = _parens; }

 public static boolean isOpening(char parens)

 { return ((parens == '(') || (parens == '[') || (parens == '{')); }

 public static boolean isClosing(char parens)

 { return ((parens == ')') || (parens == ']') || (parens == '}')); }

 public boolean matches(char otherParens)

Java by Definition Chapter 7: Sequential Data Structures Page 78 of 112

Bert G. Wachsmuth DRAFT April 2009

 { if ((parens == '(') && (otherParens == ')'))

 return true;

 else if ((parens == '{') && (otherParens == '}'))

 return true;

 else if ((parens == '[') && (otherParens == ']'))

 return true;

 else

 return false;

 }

}

With the help of that class we can follow the above algorithm closely:

public static boolean checkParens(String exp)

{ Stack s = new Stack();

 for (int i = 0; i < exp.length(); i++)

 { char cc = exp.charAt(i);

 if (Parenthesis.isOpening(cc))

 s.push(new Parenthesis(cc));

 if (Parenthesis.isClosing(cc))

 { try

 { Parenthesis parens = (Parenthesis)s.pop();

 if (!parens.matches(cc))

 return false;

 }

 catch(StackException se)

 { return false; }

 }

 }

 return s.isEmpty();

}

Note that we are making good use of the exception that is thrown if the stack was empty during a

call to pop: it means that there is no opening parenthesis for the current closing one, so the

parenthesis do not match. Also, at the end we simply return the result of a call to the isEmpty

method of the stack, because the stack must be empty in order for all opening parentheses to have

closing ones. We leave it as an exercise to check whether this method really works.

7.4. Java Build-in Sequential Structures

Because of their dynamic structure and flexibility, lists, queues, and stacks are used quite

frequently. Since version 1.2 of the JDK, Java therefore provides a complete and extensive coverage

of lists, offering an abstract framework to model the abstract data type as well as several concrete

implementations of list-like classes. In this section we will discuss this framework and show how the

concrete classes can be used. If you do use these build-in classes, your code will only run in JVM's

that support version 1.2 and better of Java.31

31

 See definition 6.2.13 to find out how to ensure that your code is executed by the latest JVM available from Sun,

regardless of which version of Java is implement in your favorite web browser.

Java by Definition Chapter 7: Sequential Data Structures Page 79 of 112

Bert G. Wachsmuth DRAFT April 2009

The Java List Framework

Instead of simply providing a List class, Java provides an abstract framework that allows

programmers to implement their own version of a concrete List class while adhering to the ADT

List specifications. Programmers could, therefore, optimize an implementation of a List that works

particularly well for a certain purpose, while being able to replace that optimized structure with

another one should they later decide on a better optimization strategy. The code using either type of

List will not have to change as long as it uses only the methods specified in the general framework.

The Java list framework is based on two interfaces, the Collection and the List interface, where

List extends Collection. Java then provides several abstract classes and three concrete ready-to-

use classes that implement the List interface. All classes and interfaces are part of the java.util

package. The classes and their inheritance structure are listed in figure 8.3.1.

 AbstractCollection extends Object implements Collection

 |

 +--AbstractList extends AbstractCollection implements List

 |

 +---AbstractSequentialList extends AbstractList implements List

 | |

 | +--LinkedList extends AbstractSequentialList implements List

 |

 +--ArrayList extends AbstractList implements List

 |

 +--Vector extends AbstractList implements List

Figure 8.3.1: The Java List classes and their inheritance structure

The basic interface that is interesting to us is the List interface, which characterizes the Java ADT

List, i.e. it specifies the methods that a class needs to implement in order to be classified as a list.

The Java ADT List is slightly different from the one chosen by us in definition 8.1.3. There we tried

to introduce the very basic idea of what a list is, whereas Java tries to provide a complete and widely

useful definition.

Definition 8.3.1: The Java ADT List Interface

The List interface forms the specifications for the Java ADT List. A Java List is an ordered

sequence of elements that supports the following operations:

 void add(int index, Object element) boolean add(Object o)

 void clear() boolean contains(Object o)

 Object get(int index) int indexOf(Object o)

 int lastIndexOf(Object o) boolean isEmpty()

 Object remove(int index) boolean remove(Object o)

 Object set(int index, Object element) int size()

 List subList(int fromIndex, int toIndex) Iterator iterator()

 ListIterator listIterator() Object[] toArray()

 ListIterator listIterator(int start)

Java by Definition Chapter 7: Sequential Data Structures Page 80 of 112

Bert G. Wachsmuth DRAFT April 2009

If a class wants to be considered a List, it must implement these methods.
32

Java provides three ready-to-use classes that implement this List interface. Their internal

implementations are different from each other and they each have advantages and disadvantages,

but they all contain the above methods and are valid lists according to definition 8.3.1.

Definition 8.3.2: The ArrayList, LinkedList, and Vector Classes

Java provides three concrete classes that implement the list interface and adhere to the Java ADT

List.

 ArrayList: an array-based list similar to the one described in definition 8.1.13

 LinkedList: a double-linked list similar to the one described in definition 8.1.11

 Vector: a list similar to ArrayList that is synchronized and therefore thread-safe

All three classes implement the List interface and therefore contain the methods listed in

definition 8.3.1. Each class has a constructor requiring no input, as well as additional methods as

described in table 8.3.2. The classes are part of the java.util package and must be imported.

In addition to the methods specified in definition 8.3.1 these classes contain several additional

methods as outlined in table 8.3.2. As long as these methods are not used, the three classes are

interchangeable, except that Vector provides a thread-safe implementation of List and should be

used if multiple threads access and modify list elements (see definition 8.3.7).

ArrayList Vector LinkedList

ArrayList(int startSize) Vector(int startSize)

void trimToSize() void trimToSize() void addFirst(Object o)

void ensureCapacity(

 int minCapacity)

void ensureCapacity(

 int minCapacity)

void addLast(Object o)

 Object firstElement() Object getFirst()

 Object lastElement() Object getLast()

 int indexOf(Object o,

 int index)

Object removeFirst()

 int lastIndexOf(Object o,

 int index)

Object removeLast()

 void setSize(int newSize)

Table 8.3.2: Additional methods for the three concrete list classes

Example 8.3.3:

Create a program that stores several names in an ArrayList using, then asks for input

from the user to search the list for the specified name. If the name is present, it should

return it; otherwise it should print an appropriate message. A Name should consist of a

first and a last name. For simplicity, you should use the Console class to obtain input

from the user. Also, determine where the add method inserts a new element by default.

Since a "name" should consist of two parts, we first need to implement a Name class. It is

straightforward:

32

 This specification does not seem to provide the methods first, next, and isLast that we required for our list in

definition 8.1.4. Instead the Java List interface uses an Iterator that will provide that functionality as described in

definition 8.3.16.

Java by Definition Chapter 7: Sequential Data Structures Page 81 of 112

Bert G. Wachsmuth DRAFT April 2009

public class Name

{ private String first, last;

 public Name(String _first, String _last)

 { first = _first;

 last = _last;

 }

 public String toString()

 { return last + ", " + first; }

}

Now we can create our program: we instantiate an ArrayList, use the add method to insert several

new names, then ask the user for a first and last name to search for. Finally, we use the indexOf

method to try to locate a corresponding name (this will, in fact, turn out not to work, but we'll give it

a try anyway):

import java.util.*;

public class NameList

{ public static void main(String args[])

 { ArrayList list = new ArrayList();

 list.add(new Name("Bert", "Wachsmuth"));

 list.add(new Name("John", "Doe"));

 list.add(new Name("Jane", "Doe"));

 System.out.print("Enter first name: ");

 String first = Console.readString();

 System.out.print("Enter last name: ");

 String last = Console.readString();

 if (list.indexOf(new Name(first, last)) >= 0)

 System.out.println("found it");

 else

 System.out.println("not found");

 }

}

When we execute this program and search for a name we know should exist in the list, figure 8.3.3

shows that our program can not find it.

Figure 8.3.3: Output of incorrect NameList program

Our program can not find the name in the list because it uses the equals method that Name inherits

from Object. That default method only checks whether two objects are stored at the same memory

location, not whether they are structurally identical. Therefore, the fault in our program is not in its

main method, but rather in the implementation of the Name class. To work properly, Name must

implement the equals method in a way that is appropriate for this class.

Therefore, we add the method public boolean equals(Object obj) to the Name class. It type-casts

the input object obj as a Name and then compare the fields first and last for equality:

public boolean equals(Object obj)

{ if (obj instanceof Name)

Java by Definition Chapter 7: Sequential Data Structures Page 82 of 112

Bert G. Wachsmuth DRAFT April 2009

 { Name name = (Name)obj;

 return ((first.equals(name.first)) && (last.equals(name.last)));

 }

 else

 return false;

}

After adding this method to Name our NameList program will correctly find the name in the list if it is

available, as seen in figure 8.3.4.

Figure 8.3.4: Output of corrected NameList program

To find out where exactly the add method inserts new elements, we simply print out all elements in

order:

import java.util.*;

public class NameListAndPrint

{ public static void main(String args[])

 { ArrayList list = new ArrayList();

 list.add(new Name("Bert", "Wachsmuth"));

 list.add(new Name("John", "Doe"));

 list.add(new Name("Jane", "Doe"));

 for (int i = 0; i < list.size; i++)

 System.out.println(list.get(i));
33

 }

}

Figure 8.3.5 shows the output of this program:

Figure 8.3.5: Determining the order of the add method

The names are printed in the order they were inserted. That implies that the add method must

insert a new element at the end of the list. We do not need to type-cast the objects returned by the

get method because polymorphism can select the appropriate toString method automatically

(compare example 8.1.8).

33

 This particular way of looping through the elements of a list works fine for small lists but may be inefficient for

longer lists. Instead an Iterator should be used for more effective list traversals. See definition 8.3.16 and

examples 8.3.15 and 8.3.17 for details.

Java by Definition Chapter 7: Sequential Data Structures Page 83 of 112

Bert G. Wachsmuth DRAFT April 2009

Since the three concrete list classes contain the same methods, they can be exchanged without

changing the basic code.

Example 8.3.4:

Convert the above program NameListAndPrint so that it uses first a LinkedList and

then a Vector instead of an ArrayList.

Since we did not use any of the special methods of ArrayList described in table 8.3.2 we can simply

switch the data type for our list from ArrayList to LinkedList. No further changes are necessary

(the changed line is in bold and italics):

import java.util.*;

public class NameListAndPrint

{ public static void main(String args[])

 { LinkedList list = new LinkedList();

 list.add(new Name("Bert", "Wachsmuth"));

 list.add(new Name("John", "Doe"));

 list.add(new Name("Jane", "Doe"));

 for (int i = 0; i < list.size; i++)

 System.out.println(list.get(i));

 }

}

Similar, to use a Vector instead of a LinkedList, we would simply change the line

LinkedList list = new LinkedList();

to
Vector list = new Vector();

The output in each case is identical to figure 8.3.5. In particular, new elements are always inserted

at the end of the list.

Now that we have three versions of a list class that seemingly perform the same, a natural question

is when to use which, and what advantages and disadvantages these classes have.

Definition 8.3.5: The Java List Classes Compared

Java provides three list classes ArrayList, LinkedList, and Vector. While all implement the

List interface, they have advantages and disadvantages based on their internal

implementation
34

:

 ArrayList is an array-based implementation. It should be used if traversal of the list is more

frequent relative to insertion and deletion. It is not thread-safe. The time for positioning is

independent of the list size. Insertion and deletion are proportional to the list size.

 LinkedList is a double-linked list implementation. It should be used if insertions and

deletions are more frequent relative to the number of traversals. It is not thread-safe. The

time for positioning is proportional to the list size. Time for insertion and deletion is

independent of list size.

34 See the discussion in section 8.1, in particular table 8.1.20

Java by Definition Chapter 7: Sequential Data Structures Page 84 of 112

Bert G. Wachsmuth DRAFT April 2009

 Vector is a synchronized array-based implementation. It should be used if the structure of

the list is concurrently modified by more than one thread.

The List interface has two "search" methods, indexOf and contains. All three lists implement

simple (linear) searching algorithms and may be slow. Both also use the equals method of the

stored object, which may be the default one inherited from Object.

This definition refers to performance issues using the various types of list. It is best understood by

creating an example that highlights the various pros and cons for our lists. Example 8.3.3 already

illustrated the problem with searching a list when no appropriate equals method exists. The next

example will clarify which type of list performs fast in what situation.

Example 8.3.6:

Create a program that exercises our three list types as follows:

 add N elements to a list, then remove them again, where N = 1000, 2000, 4000,

… 32,000

 create a list of N elements, then perform N retrievals of elements at random

positions in the list, where N = 1000, 2000, 4000, …, 32,000

Time each operation for each list type and compare the performance.

We create two methods, one that adds N elements to a list, then removes them again, and another

that performs N random retrievals from a list. Both methods will return the time they took to

complete their task. Then we embed both methods in appropriate loops, where N = 1000, 2000, 4000,

…, 32,000 and display the times in a table. Here is the code:

import java.util.*;

public class ListPerformance

{ public static long addRemove(List list, int n)

 { long start = System.currentTimeMillis();

 for (int i = 0; i < n; i++)

 list.add(new Double(i));

 for (int i = 0; i < n; i++)

 list.remove(0);

 return (System.currentTimeMillis() - start);

 }

 public static long jumpAround(List list, int n)

 { long start = System.currentTimeMillis();

 for (int i = 0; i < n; i++)

 { Object obj = list.get((int)(n*Math.random())); }

 return (System.currentTimeMillis() - start);

 }

 public static void addRemovePerformance()

 { System.out.println("N\tArray\tLinked\tVector");

 for (int n = 1000; n <= 32000; n *= 2)

 { System.out.print(n + "\t" + addRemove(new ArrayList(), n));

 System.out.print("\t" + addRemove(new LinkedList(), n));

 System.out.println("\t" + addRemove(new Vector(), n));

 }

 }

 public static void accessPerformance()

 { System.out.println("N\tArray\tLinked\tVector");

 for (int n = 1000; n <= 32000; n *= 2)

 { ArrayList arrayList = new ArrayList();

Java by Definition Chapter 7: Sequential Data Structures Page 85 of 112

Bert G. Wachsmuth DRAFT April 2009

 LinkedList linkedList = new LinkedList();

 Vector vector = new Vector();

 for (int i = 0; i < n; i++)

 { arrayList.add(new Double(i));

 linkedList.add(new Double(i));

 vector.add(new Double(i));

 }

 System.out.print(n + "\t" + jumpAround(arrayList, n));

 System.out.print("\t" + jumpAround(linkedList, n));

 System.out.println("\t" + jumpAround(vector, n));

 }

 }

 public static void main(String args[])

 { System.out.println("Insert/Delete Times");

 addRemovePerformance();

 System.out.println("Random Access Times");

 accessPerformance();

 }

}

The output of this program is shown in figure 8.3.6 and explains very clearly what definition 8.3.5 is

all about.35

Figure 8.3.6: Performance of the three list types

Insertion and deletion works fastest

for a LinkedList. Increasing N seems

to have little impact on its time. For

ArrayList and Vector, larger values

of N result in much larger

computational times.

Random access to list elements

results in the opposite situation. Now

ArrayList and Vector perform fast,

with different values of N having no

impact on the time. The LinkedList,

on the other hand, takes much longer

as the value of N increases.

This shows that it is worthwhile to

think carefully about how a list will

be used before choosing one of the

available types.

The final performance issue that needs clarification is the synchronized nature of a Vector.

Definition 8.3.5 mentions that ArrayList and LinkedList are not thread-safe, whereas a Vector is.

Definition 8.3.7: Rule of Thumb for Synchronized and Unsynchronized Lists

If a list class is not synchronized and multiple threads add or remove elements from it at the same

time, the structure of the list may be compromised. For synchronized lists, such additions or

35

 The particular code we chose highlights the performance differences of our lists. For example, accessing one

element in a LinkedList is proportional to the list size (it is O(n)), but we perform n retrievals, which makes the

time O(n
2
).

Java by Definition Chapter 7: Sequential Data Structures Page 86 of 112

Bert G. Wachsmuth DRAFT April 2009

deletions are safe. On the other hand, synchronized lists may perform slower than

unsynchronized ones.

If exactly one thread accesses a list, you can use an ArrayList or LinkedList. If multiple

threads access a list, you should use a Vector or externally synchronize access to the list via an

encapsulating class.
36

Example 8.3.8:

Create a program that shows that the structure of an unsynchronized list can be

corrupted when it is accessed by more than one thread, while using a synchronized list

will prevent that problem.

We need to create a program that executes a particular list method and while that method is still

executing we need to be able to change the structure of the list without the first method noticing.

Therefore we need one list method that executes particularly slow and another that executes quickly.

If we used an ArrayList, we saw in example 8.3.6 that a particularly slow method is add, while

access to list elements is provided fast. Therefore, our idea is as follows:

 we create one "slow" thread that will add an element to an existing list at the first position,

then display the first element of the list37

 while that method is executing we start a second "fast" thread that will change the first

element in the list, then display its value.

Since the first operation is slow while the second one is fast we might be able to change the structure

of the list using the second operation before the first operation is finished. Here is the code that will

accomplish this:

 The main class will simply create a large list of type ArrayList and start the "slow

operation" thread:

import java.util.*;

public class CorruptedList

{ public static void main(String args[])

 { ArrayList list = new ArrayList();

 System.out.println("Creating list, please wait ...");

 for (long i = 0; i < 1000000; i++)

 list.add(new Double(i));

 System.out.println("List created ...");

 SlowOperation slow = new SlowOperation(list);

 }

}

 The "slow operation" thread will start a "fast operations" thread then add an element to the

list at the first position:

class SlowOperation extends Thread

{ private List list = null;

 public SlowOperation(List _list)

 { list = _list;

 System.out.println("Starting slow operation ...");

 start();

36

 One of the exercises will ask you to create a synchronized version of our custom Queue from definition 8.1.14.
37

 Based on definition 8.1.13 it is clear that adding a new element at the first position of an array-based list will take

particularly long because all existing elements need to be moved up by one before a new one can be inserted.

Java by Definition Chapter 7: Sequential Data Structures Page 87 of 112

Bert G. Wachsmuth DRAFT April 2009

 }

 public void run()

 { FastOperation fast = new FastOperation(list);

 list.add(0, new Double(-10));

 System.out.println("Slow thread sees element: " + list.get(0)); }

}

 The "fast operations" thread will change the first element in the list, then display the value

of the first element in the list:

class FastOperation extends Thread

{ private List list = null;

 public FastOperation(List _list)

 { list = _list;

 System.out.println("Starting fast operation ...");

 start();

 }

 public void run()

 { list.set(0, new Double(10));

 System.out.println("Fast thread sees element: " + list.get(0));

 }

}

Figure 8.3.7 shows that we have a problem:

Figure 8.3.7: Output of CorruptedList class using ArrayList

 the slow thread executes first and adds –10 as the first element

 the fast thread executes second and changes the value of the first element to 10

 both threads should see 10 as the first value in the list, but they do not

The add operation takes a long time to finish, and while it is executing the second thread quickly

changes what is currently the first element of the list. Then the original thread finishes and adds –

10 as the first element. The element changed by the second thread has now moved to second position

even though the fast thread changed the first element in the list. In particular, figure 8.3.7 shows

that the fast thread started second but displays its value of 10 first. After that the slow thread

thinks the first element is –10 even though it started before the fast thread.

If we used a synchronized list this problem should go away. As soon as the slow thread starts its add

operation, a synchronized list will block all access to the list until that add operation is finished. All

we have to do is change the list type from ArrayList to Vector:

public class SynchronizedList

{ public static void main(String args[])

 { Vector list = new Vector();

 /* rest unchanged */

 }

Java by Definition Chapter 7: Sequential Data Structures Page 88 of 112

Bert G. Wachsmuth DRAFT April 2009

}

class SlowOperation extends Thread

{ /* no change from above */ }

class FastOperation extends Thread

{ /* no change from above */ }

The output of running this modified program using a synchronized list is shown in figure 8.3.8:

Figure 8.3.8: Output of SynchronizedList using Vector38

Again the add operation of the slow thread starts first but it blocks access to the list. Therefore, the

fast thread is not allowed access to the list elements and is put on hold. When the add operation is

finished, the fast thread can continue to change the newly added element in the first position.

Everything continues to be in sync.

Example 8.3.9:

In example 4.38 we created a rather extensive address book program to add, delete, and

sort addresses. One drawback of the program we created is that it could store a

maximum of 100 addresses only. Change whatever is necessarily in that program so that

the number of addresses that the new program can handle is limited only by available

memory.

First let's review the components that made up the address book program in example 4.38. There

were several utility classes:

Sortable: an interface for sorting an array (as defined in example 4, section 3.6)

Sorter: class to sort an array of Sortable items (from example 4, section 3.6)

YesNo: a message dialog with “Yes/No” buttons (see example 4.37)

ButtonRow: a class to arrange buttons in a FlowLayout (see example 4.36)

Then there were the classes specifically created for the address book program:

Address represents a "public" address

PrivateAddress represents a "private" address

AddressBook stores different types of addresses in a list-like structure

AddressDialog dialog to add and modify addresses

AddressBookGUI layout of main program, controls action

38

 If you execute SynchronizedList several times, the fast thread may occasionally display its element first. It may

even happen that the slow thread displays –10 because the fast thread could not change the value before the slow

one printed it out. But in this synchronized version it should not happen that the fast thread shows 10 and then the

slow thread shows –10.

Java by Definition Chapter 7: Sequential Data Structures Page 89 of 112

Bert G. Wachsmuth DRAFT April 2009

AddressApplet allows the program to run as an applet

The class that is responsible for storing the addresses and which limits the number of possible

addresses is clearly AddressBook, so let's review that class in detail:

public class AddressBook

{ private static int MAXNUMBER = 100;

 private Address[] addresses = null;

 private int currentNumber = -1;

 public AddressBook()

 { addresses = new Address[MAXNUMBER]; }

 public void add(Address newAddress)

 { if (currentNumber < MAXNUMBER-1)

 { currentNumber++;

 addresses[currentNumber] = newAddress;

 }

 }

 public void del(int pos)

 { if (pos < currentNumber)

 for (int i = pos + 1; i <= currentNumber; i++)

 addresses[i-1] = addresses[i];

 currentNumber--;

 }

 public Address get(int pos)

 { return addresses[pos]; }

 public void sort()

 { Sorter sorter = new Sorter();

 sorter.sort(addresses, currentNumber);

 }

}

We now want to change that class so that it uses a list instead of an array to store the various

address types. We first need to decide whether to use an ArrayList, a LinkedList, or a Vector.

There are clearly no synchronization problems, so we do not need a Vector. A typical use of an

address book program is to look up addresses, while new addresses will not be added as frequently

once a set of core addresses is available. Therefore we decide to use an ArrayList. To ensure that all

other classes can remain unchanged we keep all public method headers of the AddressBook class

intact but change their inner workings as follows:

import java.util.*;

public class AddressBook

{ private ArrayList addresses = null;

 public AddressBook()

 { addresses = new ArrayList(); }

 public void add(Address newAddress)

 { addresses.add(newAddress); }

 public void del(int pos)

 { addresses.remove(pos); }

 public Address get(int pos)

 { return (Address)addresses.get(pos); }

 public void sort()

 { Sorter sorter = new Sorter();

 Sortable addressArray[] = new Sortable[addresses.size()];

 for (int i = 0; i < addresses.size(); i++)

 addressArray[i] = (Sortable)addresses.get(i);

 sorter.sort(addressArray);

 for (int i = 0; i < addressArray.length; i++)

 addresses.set(i, addressArray[i]);

 }

Java by Definition Chapter 7: Sequential Data Structures Page 90 of 112

Bert G. Wachsmuth DRAFT April 2009

}

The new class is significantly easier than the previous version and it can store as many addresses as

memory permits. The only method that has gotten more complicated, and in fact slower, is sort.

That is due to shortcomings of our old Sorter class from example 4, section 3.6. If we improved that

class so that it could sort lists in addition to arrays, the new AddressBook class would be completely

easy (see exercise).

Nothing else has to change. If you copy – without change – all classes into one directory and replace

the old AddressBook class by our new version, the program will function just as before but is now

able to handle a lot more addresses.

In addition to standard List types Java also provides a Stack class, which we will introduce next.

Definition 8.3.10: The Stack Class

This class implements a LIFO (Last-In-First-Out) structure, as described in definition 8.1.18. The

Java API defines the class as follows:

 public class Stack extends Vector

 { // constructor

 Stack()

 // methods

 public boolean empty()

 public Object peek()

 public Object pop()

 public Object push(Object item)

 public int search(Object o)
39

 }

Since this class extends Vector, it provides synchronized access to its elements. The class is part

of the java.util package and must be imported.

Strictly speaking, this implementation of a Stack is not appropriate: since Stack extends Vector, all

public methods available to Vector are also available to a Java standard Stack. Hence, the integrity

of a Stack could be destroyed by using methods that are not appropriate for a stack. It is left to the

programmer to avoid using those "non-stack" methods.

Example 8.3.11

Redo example 8.1.20 where we pushed the strings "Java", "by", "Definition" into a

Stack, then popped them and printed the results.

The Java build-in Stack does not use exceptions, different from our own Stack from definition 8.1.18.

Therefore we need to adjust the code from example 8.1.20 slightly since we do not need to catch any

exceptions. The following simple code will work perfectly fine:

import java.util.*;

public class StackTest

{ public static void main(String args[])

39

 This method returns the height of the object from the top of the stack, if it is found, or –1 otherwise.

Java by Definition Chapter 7: Sequential Data Structures Page 91 of 112

Bert G. Wachsmuth DRAFT April 2009

 { Stack s = new Stack();

 s.push("Java");

 s.push("by");

 s.push("Definition");

 while (!s.isEmpty())

 System.out.println(s.pop());

 }

}

Of course it will display the strings that were pushed into the stack in reverse order since a stack is

a LIFO structure.

There is no predefined Queue class but it is easy to define one that extends List. Just as for the

build-in Stack class that approach is not entirely legal, but since it is so easy to do it is difficult to

pass up that opportunity. The details are left as an exercise.

StringTokenizer Class

Our final example of a sequential structure is the one created by the StringTokenizer class. That

class is quite useful in many situations and is well worth remembering in detail.

Definition 8.3.12: The StringTokenizer Class

This class breaks a string into tokens depending on a set of specified delimiters. The tokens can

be retrieved in order, either including or excluding the delimiters. For example, if the string

"Java by Definition" is tokenized using the space character as delimiter, it results in the five

tokens "Java", SPACE, "by", SPACE, and "Definition". The Java API defines the StringTokenizer

class as follows:

 public class StringTokenizer extends Object implements Enumeration

 { // constructor

 StringTokenizer(String str)

 StringTokenizer(String str, String delim)

 StringTokenizer(String str, String delim, boolean returnTokens)

 // selected methods

 int countTokens()

 boolean hasMoreTokens()

 String nextToken()

 }

Each character in the second and third constructor's input string delim will act as a delimiter to

break up the original string. The default delimiters are " \t\n\r\f", i.e. space, tab, new line,

return, and form-feed. The class is part of the java.util package and must be imported.

The StringTokenizer class is frequently used to break apart strings that contains several data

values separated by some kind of delimiter. Such data is quite common. Microsoft Excel, for example,

can save spreadsheet data in such delimited form and a StringTokenizer could be used to separate

the individual values from each other.

Example 8.3.13:

Java by Definition Chapter 7: Sequential Data Structures Page 92 of 112

Bert G. Wachsmuth DRAFT April 2009

Consider the String "10|-1|41". Use the StringTokenizer class to extract the three

numbers from the string, convert them to integers, and add them up.

Without the StringTokenizer we would have to search through the string and locate the delimiter

character '|' manually. The StringTokenizer class simplifies and automates that process:

import java.util.*;

public class SumOfTokens

{ public static void main(String args[])

 { String s = "10|-1|41";

 StringTokenizer tokens = new StringTokenizer(s, "|");

 int sum = 0;

 while (tokens.hasMoreTokens())

 sum += Integer.parseInt(tokens.nextToken());

 System.out.println("Sum is: " + sum);

 }

}

The next example uses multiple delimiters to tokenize a string and will be pursued further in the

exercises:

Example 8.3.14:

Use a StringTokenizer class to break up a mathematical expression into tokens. The

delimiters should be the standard binary operators '+', '-', '/', '*', and '^' as well as the

standard parenthesis ')' and '('. The delimiters should be included in the list of tokens.

Use the Console class to get the expression from the user and print out the list of tokens

after the user enters an expression.

We will use a while loop to ask for user input until the user enters "q". Otherwise, we will

instantiate a new StringTokenizer object, using the expression as input and the string "+-/*^()" as

delimiters. We also add a boolean value to the constructor to indicate that we want the operators as

part of the token list:

import java.util.*;

public class MathTokenize

{ public static void main(String args[])

 { String input = new String("");

 String delim = "+-/*^()";

 while (!input.equals("q"))

 { StringTokenizer tokens = new StringTokenizer(input, delim, true);

 while (tokens.hasMoreTokens())

 System.out.println(tokens.nextToken().trim());

 System.out.print("Enter expression [q to quit]: ");

 input = Console.readString();

 }

 }

}

A sample run of this program is shown in figure 8.3.9.

Java by Definition Chapter 7: Sequential Data Structures Page 93 of 112

Bert G. Wachsmuth DRAFT April 2009

Figure 8.3.9: Sample run of MathTokenize

Iterators

When using sequential structures such as lists we often need to provide code that traverses the

entire list to process each element. With our own hand-made list from definition 8.1.4 that can be

accomplished with the methods first, next, and isLast. Neither of the standard Java List

structures from definition 8.3.1, however, provide a next method, so a different approach is

necessary to traverse these lists. At first glance the solution seems easy: use the method Object

get(int index) together with size()as in the following code:

for (int i = 0; i < list.size(); i++)

{ Object obj = list.get(i);

 // process the objects

}

As usual, list could be of type ArrayList, LinkedList, or Vector. But for large lists this code could

be very slow, especially for a LinkedList. After all, we have seen in example 8.3.6 that accessing

elements of a LinkedList is a particularly slow operation.

Example 8.3.15:

Create a program that creates a LinkedList containing 10,000 random double values.

Then traverse the list in a loop to find the average of these numbers. If you created a

similar program using our own type of List as defined in definition 8.1.4, which program

executes faster?

Both programs are very simple. The first can use a for loop to compute the average, while the second

needs to use a while loop. Here is the code for both classes:

import java.util.*;

public class TraverseLinkedList

{ public static void main(String args[])

 { int SIZE = 10000;

 System.out.println("Creating list ...");

 LinkedList list = new LinkedList();

 for (int i = 0; i < SIZE; i++)

 list.add(new Double(Math.random()));

Java by Definition Chapter 7: Sequential Data Structures Page 94 of 112

Bert G. Wachsmuth DRAFT April 2009

 System.out.println("Computing average ...");

 long start = System.currentTimeMillis();

 double sum = 0.0;

 for (int i = 0; i < SIZE; i++)

 sum += ((Double)list.get(i)).doubleValue();

 long stop = System.currentTimeMillis();

 System.out.println("Average: " + sum / SIZE);

 System.out.println("Time : " + (stop - start));

 }

}

public class TraverseCustomList

{ public static void main(String args[])

 { int SIZE = 10000;

 System.out.println("Creating list ...");

 List list = new List();

 for (int i = 0; i < SIZE; i++)

 list.insert(new Double(Math.random()));

 System.out.println("Computing average ...");

 try

 { long start = System.currentTimeMillis();

 double sum = 0.0;

 list.first();

 while (!list.isLast())

 { sum += ((Double)list.retrieve()).doubleValue();

 list.next();

 }

 sum += ((Double)list.retrieve()).doubleValue();

 long stop = System.currentTimeMillis();

 System.out.println("Average: " + sum / SIZE);

 System.out.println("Time : " + (stop - start));

 }

 catch(ListException le)

 { System.err.println("List Exception: " + le); }

 }

}

The code using our custom List is slightly more complicated but as figure 8.3.10 shows it is a lot

faster than the program using the build-in LinkedList structure.40

Figure 8.3.10: Comparing TraverseLinkedList with TraverseCustomList

To remedy this problem and to simply traversal of a list, Java offers an Iterator interface. Support

for that interface is build in to all list structures.

40

 In "big-O" notation the get method for a LinkedList is O(n) which makes the code for TraverseLinkedList a

O(n2) operation. A similar loop for TraverseCustomList is only O(n).

Java by Definition Chapter 7: Sequential Data Structures Page 95 of 112

Bert G. Wachsmuth DRAFT April 2009

Definition 8.3.16: The Iterator Interface

This interface simplifies sequential processing of any standard Java list structure by providing

access to the list elements in sequential order. The Java API defines the Iterator as follows:

 public abstract interface Iterator

 { boolean hasNext()

 Object next()

 }

The next method returns the current object and advances an internal pointer to point to the next

element in the list. An Iterator can be established by using the iterator method that is part of

the List interface and hence part of all standard Java List structures. An Iterator allows

sequential processing of the elements in a list via a fast and simple for loop:

 for (Iterator iterator = list.iterator(); iterator.hasNext();)

 System.out.println(iterator.next());

Example 8.3.17:

Redo example 8.3.15 but use an Iterator for the TraverseLinkedList program.

Compare the resulting times against those displayed in figure 8.3.10.

The new program should use an iterator instead of the list.get method. Using a for loop as in

definition 8.3.16 the code will change as follows, with the changes in bold and italics:

import java.util.*;

public class TraverseLinkedListWithIterator

{ public static void main(String args[])

 { int SIZE = 10000;

 System.out.println("Creating list ...");

 LinkedList list = new LinkedList();

 for (int i = 0; i < SIZE; i++)

 list.add(new Double(Math.random()));

 System.out.println("Computing average ...");

 long start = System.currentTimeMillis();

 double sum = 0.0;

 for (Iterator iterator = list.iterator(); iterator.hasNext();)

 sum += ((Double)iterator.next()).doubleValue();

 long stop = System.currentTimeMillis();

 System.out.println("Average: " + sum / SIZE);

 System.out.println("Time : " + (stop - start));

 }

}

The changes were minimal, yet the result is dramatically faster, as shown in figure 8.3.11.

Figure 8.3.11: Timing the TraverseLinkedListWithIterator program

Java by Definition Chapter 7: Sequential Data Structures Page 96 of 112

Bert G. Wachsmuth DRAFT April 2009

Now our LinkedList can be traversed just as fast as the custom List, or in fact as fast as an

ArrayList. It might take a little practice, especially since the modification piece of the for loop is

moved inside the loop, but it is well worth using an Iterator to speed up sequential access to the

build-in list structures.

Here is one more example using an Iterator to get used to the funny for loop it uses.

Example 8.3.18:

In example 8.3.3 we created a Name class to handle a first and last name. Create a list of

Name objects, then use the Iterator interface to print out the complete list.

The code to create the list is just as it was in the previous exercises. We then use the sample code

from the above definition to process each list element. Note that we can use an ArrayList, a

LinkedList, or a Vector as the underlying list structure. Let's use a Vector for variety:

import java.util.*;

public class NameIterator

{ public static void main(String args[])

 { Vector list = new Vector();

 list.add(new Name("Bert", "Wachsmuth"));

 list.add(new Name("John", "Doe"));

 list.add(new Name("Jane", "Doe"));

 for (Iterator iterator = list.iterator(); iterator.hasNext();)

 System.out.println(iterator.next());

 }

}

An Iterator allows processing the elements in a list in forward order only, because the next method

will advance the internal pointer to the next element. A second type of Iterator is more flexible,

allowing forward and backward processing of a list.

Definition 8.3.19: The ListIterator Interface

This interface simplifies sequential processing of any standard Java list structure in forward and

backward order by providing access to the list elements in sequential order. The Java API defines

the ListIterator as follows:

 public abstract interface ListIterator extends Iterator

 { boolean hasNext()

 boolean hasPrevious()

 Object next()

 Object previous()

 }

A ListIterator can be established by using one of the two listIterator method that are part

of the List interface and hence part of all standard Java list structures. A ListIterator allows

sequential processing of the elements in a list in forward as well as reverse direction via fast and

simple for loops:

Java by Definition Chapter 7: Sequential Data Structures Page 97 of 112

Bert G. Wachsmuth DRAFT April 2009

Forward order:
 for (ListIterator iter = list.listIterator(0);

 iter.hasNext();)

 System.out.println(iter.next());

Backwards order:
 for (ListIterator iter = list.listIterator(list.size());

 iter.hasPrevious();)

 System.out.println(iter.previous());

Example 8.3.20:

Redo example 8.3.18, using a ListIterator instead of an Iterator, and print the list of

names first in regular order, then backwards.

All we have to do is change the type and instantiation of Iterator to ListIterator, providing a

starting index of 0 to start the iteration at the beginning of the linked list for the forward direction

and at list.size() for reverse processing.

import java.util.*;

public class NameListIterator

{ public static void main(String args[])

 { LinkedList list = new LinkedList();

 list.add(new Name("Bert", "Wachsmuth"));

 list.add(new Name("John", "Doe"));

 list.add(new Name("Jane", "Doe"));

 System.out.println("Printing list forward");

 for (ListIterator iter = list.listIterator(0);

 iter.hasNext();)

 System.out.println(iter.next());

 System.out.println("Printing list backwards");

 for (ListIterator iter = list.listIterator(list.size());

 iter.hasPrevious();)

 System.out.println(iter.previous());

 }

}

We could redo this example so that the second loop picks up right where the first loop terminates:

import java.util.*;

public class NameListIterator

{ public static void main(String args[])

 { LinkedList list = new LinkedList();

 list.add(new Name("Bert", "Wachsmuth"));

 list.add(new Name("John", "Doe"));

 list.add(new Name("Jane", "Doe"));

 ListIterator iter = list.listIterator(0);

 System.out.println("Printing list forward");

 for (; iter.hasNext();)

 System.out.println(iter.next());

 System.out.println("Printing list backwards");

 for (; iter.hasPrevious();)

 System.out.println(iter.previous());

 }

}

Java by Definition Chapter 7: Sequential Data Structures Page 98 of 112

Bert G. Wachsmuth DRAFT April 2009

The for loops in this version may look strange. But if we consider how our custom List contained a

reference to the current element of the list it is easy to understand how Iterator and ListIterator

work.

Now we have sophisticated data structures at our disposal that we could use in place of arrays

whenever a dynamical structure is needed. We can now move on to the last segment of this text, file

processing and network computing.

Case Study: A Mathematical Expression Parser

Our next example will use stacks and queues extensively in a calculator program where the user can

enter the expression to be computed in one line, including parentheses. Our program will analyze the

input, evaluate it if possible, and compute the answer or display an appropriate error message. This

is significantly more complicated than creating a calculator based on a graphical user interface with

buttons for the numbers and operators41. The advantage of a button-based calculator is that the

program knows by virtue of the buttons pressed whether the user has entered a number or an

operator. If we allow the user to enter an entire expression we first need to take that expression

apart and determine where the numbers and where the operators are. In addition, the user could

commit a wide variety of errors by incorrectly entering numbers, operators, and parenthesis and our

program has to be prepared to catch any irregularity, while still evaluating proper expressions

correctly. Our new calculator program should, for example, correctly evaluate the expression:

((20.3 - 11.2) * 2 / (3 + 5)) * 2^(3-5)

which evaluates to 0.56875, while recognizing an expression like:

((20.4 - 11.2) * 2 / (3 + 5) * 2^(3-)

as incorrect (the last term (3-) is incorrect and the parentheses do not match either). Our "line input"

calculator will be somewhat involved, so we will proceed in three stages.

Stage 1: The Tokenizer

Example 8.2.1:

Our goal is to create a calculator that can evaluate expressions involving numbers,

standard round parenthesis, and the binary operators +, -, *, /, and ^, using the "natural"

order of precedence of these operators. As a first stage towards this goal, create a method

that analyzes a string representing a mathematical expression and categorizes the

expression as numbers and operators.

What we want to do is start with an input string such as, for example, 10 + 20, and end up,

somehow, with a classification such as "number 10", "operator +", "number 20". Therefore, we need

two different kind of tokens, or signifiers: one to indicate a valid "number", and another to indicate a

valid "operator". Thus, we will create three classes before anything else:

 a superclass Token

 a class TokenNumeric as a subclass of Token

41

 We have already created such a button-based calculator in example 4.5.8.

Java by Definition Chapter 7: Sequential Data Structures Page 99 of 112

Bert G. Wachsmuth DRAFT April 2009

 a class TokenOperator as a subclass of Token

The Token class will, for now, only contain the method toString. We don't have any information to

arrive at the string representation of a Token, so we will declare that method as abstract (and hence

the Token class will be abstract)

public abstract class Token

{ public abstract String toString(); }

To implement TokenNumeric and TokenOperator we will allow for the possibility of constructing

invalid versions, i.e. attempts to create a TokenNumeric for an invalid number, or a TokenOperator

for an invalid operator. Therefore we need a TokenException class which can be thrown when

constructing an invalid token. Here is the exception class, as usual:

public class TokenException extends Exception

{ public TokenException()

 { super("Invalid token"); }

 public TokenException(String msg)

 { super(msg); }

}

The purpose of TokenNumeric is to store a number. Thus, the class needs a field to store the number

it represents as well as a constructor to set the number. Since the number will be constructed from

an input string, we will overload the constructor to either take a number as input or a string which

will get converted to a number if possible. If the conversion is not possible, a TokenException is

thrown. To retrieve the stored number, we add an appropriate getNumber method. Finally, we

implement the toString method to generate the String representation of the number. Here is the

code:

public class TokenNumeric extends Token

{ private double number = 0.0;

 public TokenNumeric(double _number)

 { number = _number; }

 public TokenNumeric(String _number) throws TokenException

 { try

 { number = Double.valueOf(_number).doubleValue();

 }

 catch(NumberFormatException ne)

 { throw new TokenException("Invalid numeric format: " + _number);

 }

 }

 public double getNumber()

 { return number; }

 public String toString()

 { return String.valueOf(number); }

}

As for the TokenOperator class, it clearly needs to store an "operator", so we will use a field of type

String for that. Only the operators '+', '-', '/', '*', '^' are valid, but we will also consider the

parentheses ')' and '(' as valid operators. To define these valid operators, we will use a constant

string OPERATORS. The operator is set via the constructor and if it is not valid a TokenException is

thrown. We will also implement a static method isValidOp that determines if the input character

represents a valid operator. The toString method creates an appropriate string representation of

our operator. We really should create a method getOperator to access the operator but as it will turn

out later that will not be necessary:

public class TokenOperator extends Token

Java by Definition Chapter 7: Sequential Data Structures Page 100 of 112

Bert G. Wachsmuth DRAFT April 2009

{ private static String OPERATORS = "+-/*^()";

 private String token;

 public TokenOperator(String _token) throws TokenException

 { if (OPERATORS.indexOf(_token) >= 0)

 token = _token;

 else

 throw new TokenException("invalid operator: " + _token);

 }

 public static boolean isValidOp(char op)

 { return (OPERATORS.indexOf(op) >= 0); }

 public String toString()

 { return "Operator: " + token; }

}

Now we are in a position to break up the input expression and classify it as either TokenNumeric or

TokenOperator. We will collect these tokens in a queue in the order they appear in the input string

and later analyze them for correct syntax. Our static method tokenize will work as follows:

 Create an empty queue Q and an empty string token.

 Process the input expression one character at a time.

 If the current character is not a valid operator, it is assumed to be part of a number, so

append it to the string token.

 Otherwise the number currently stored in token is complete, so we try to construct a

TokenNumeric object from it and insert it into the queue. Also, we try to construct a

TokenOperator from the current character and enqueue it as well. Finally we reset the

string token to be empty to receive the next number.

Here is the method implementing this algorithm:

protected static Queue tokenize(String input) throws TokenException

{ Queue Q = new Queue();

 String token = new String("");

 for (int i = 0; i < input.length(); i++)

 { char cc = input.charAt(i);

 if (!TokenOperator.isValidOp(cc))

 token += cc;

 else

 { if (!token.trim().equals(""))

 Q.enqueue(new TokenNumeric(token.trim()));

 Character operator = new Character(cc);

 Q.enqueue(new TokenOperator(operator.toString()));

 token = new String("");

 }

 }

 if (!token.trim().equals(""))

 Q.enqueue(new TokenNumeric(token.trim()));

 return Q;

}

To test our method, we embed it in a simple test class, using the readString method of Console to

get the input from the user, tokenize the input string, and print out the queue that is created. Let's

call our test class Calculator, in view of our final goal:

public class Calculator

{ private static Queue tokens = null;

 protected static Queue tokenize(String input) throws TokenException

 { /* as above */ }

 public static void main(String args[])

 { System.out.print("Calc [q to quit] => ");

Java by Definition Chapter 7: Sequential Data Structures Page 101 of 112

Bert G. Wachsmuth DRAFT April 2009

 String input = Console.readString();

 while (!input.equalsIgnoreCase("q"))

 { try

 { tokens = tokenize(input);

 while (!tokens.isEmpty())

 System.out.println(tokens.dequeue());

 }

 catch(TokenException te)

 { System.err.println(te); }

 catch(QueueException qe)

 { System.err.println(qe); }

 System.out.print("Calc [q to quit] => ");

 input = Console.readString();

 }

 }

}

At this state the program will correctly tokenize any input string that represents a valid expression.

It will also process some mathematically incorrect expressions, while throwing an exception for

others

 everything between two valid operators must represent a valid number

 valid operators in sequence will be classified correctly, even though mathematically incorrect

For example, the input strings "10 + 20.44" and "-((10 - 20) -+* (20 - 49" will both be processed

correctly even though the second does not make sense mathematically. Expressions such as "10.b +

99" or "10 20 30" or "10 % 20" are all recognized as invalid.

At this stage we can differentiate between numbers and operators and all numbers and operators

that make it into the queue will be valid and proper (but not necessarily in the right order). Our next

stage could be to try to evaluate the tokens. However, the way we normally enter valid mathematical

expressions is not easy to evaluate via a computer algorithm. Therefore, we will first convert the

queue of valid tokens into another queue based on the order of precedence of the operators and the

level of parentheses. That new queue will turn out to be quite easy to evaluate. As a side benefit, the

process of converting one queue into the other can also check whether the expression is

mathematically correct, at least for the most part. The two different orderings of the queues, or

mathematical expressions, are known as "infix" and "postfix" notation.

Stage 2: Converting to Postfix

Definition 8.2.2: infix and postfix Notation

Infix and postfix notations are two different ways to denote mathematical expressions.

 In infix notation, two numbers are always separated by operators. The order in which an

infix expression is to be evaluated depends on the order of precedence of the various

operators as well as on grouping symbols such as standard parentheses.

 In postfix notation, numbers occur first, followed by operators that are relevant to numbers

preceding the operator. There are no parentheses in postfix notation and the order in which a

postfix expression is evaluated is always from left to right.

Either notation can be converted into the other. Infix notation is the "usual" way we write a

mathematical expression, while the equivalent postfix notation is easier to evaluate via a computer

algorithm. Before we continue, here are a few examples:

Java by Definition Chapter 7: Sequential Data Structures Page 102 of 112

Bert G. Wachsmuth DRAFT April 2009

infix Notation postfix Notation
10.5 + 20.3 10.5 20.3 +

10 + 20 * 30 10 20 30 * +

10 * 20 + 30 10 20 * 30 +

(10 + 20) * 30 10 20 + 30 *

10 * 3^2 -1 10 3 2 ^ * 1 -

10 * 3^(2 - 1) 10 3 2 1 - ^ *

Table 8.2.1: Examples of expression in infix and postfix notation

It takes some practice to convert infix to postfix notation "by hand", but once postfix notation is

mastered it does offer plenty of advantages. In fact, older Hewlett Packard calculators used "postfix"

notation exclusively, i.e. you had to enter an expression in postfix notation in order for these

calculators to compute the answer. They we very popular among engineers and scientists, because

complex calculations could be entered quite efficiently. Today, however, infix notation is the

predominant way to enter mathematical expression, even though many computers programs (and

calculators) still convert the expression to postfix notation internally before evaluating it.

Example 8.2.3:

Our goal is to create a calculator that can evaluate expressions involving numbers,

standard round parenthesis, and the binary operators +, -, *, /, and ^, using the "natural"

order of precedence of these operators. In example 7.2.1 we created a tokenize method to

turn a string representing a mathematical expression into a queue of tokens. Now create

a method that converts a queue of tokens in infix notation into the corresponding queue

of tokens in postfix notation.

To convert infix to postfix notation, we need to worry about the order of precedence of our

mathematical operators. For example, the expressions "10 + 20 * 30" and "10*20 + 30" are

converted quite differently in table 8.2.1. Here is an algorithm for converting infix to postfix

(assuming, for now, that there are no parenthesis to change the order of precedence):

The assumption is that our expression has been tokenized and is available in a queue. We need a

"postfix queue" to contain the resulting expression in postfix notation, and an "operator stack" to

ensure that operators are entered into the postfix queue in the correct order:

 start with the first token in an expression queue, an empty result queue, and an empty

operator stack

 if the token is a number, enqueue it into the result queue

 otherwise (token is an operator) do the following:

 if the operator stack is empty, push it into the operator stack

 otherwise (operator stack not empty) do the following:

 if the token at the top of the operator stack has precedence less than the

current token, push the current token into the stack

 otherwise pop all tokens from the stack whose precedence is greater than or

equal to the current token and enqueue them into the result queue. Then

push the current token into the stack

 continue this process with the next token

 when all tokens in the expression queue are processed, pop all remaining tokens from the

operator stack (if any) and enqueue them into the postfix queue.

Let's apply this algorithm to the expression "10 + 20 * 30":

Java by Definition Chapter 7: Sequential Data Structures Page 103 of 112

Bert G. Wachsmuth DRAFT April 2009

10 | num 30 | num * | op20 | num + | opinfix: op-stack:

postfix:

At the start, postfix queue and

operator stack are empty

10 | num

30 | num * | op20 | num + | opinfix: op-stack:

postfix:

First token is 10 (number), so it

goes into the postfix queue

10 | num

30 | num * | op20 | num

 + | op
infix: op-stack:

postfix:

Next token is + (operator) and

stack is empty, so it goes into

the stack

10 | num

30 | num * | op

20 | num + | op
infix: op-stack:

postfix:

Next token is 20 (number), so it

goes into the postfix queue

10 | num

30 | num

 * | op20 | num

 + | op

infix: op-stack:

postfix:

Next token is * (operator) and

token at top of stack has lesser

precedence, so it goes into stack

10 | num 30 | num
 * | op

20 | num
 + | op

infix:
op-stack:

postfix:

Next token is 30 (number), so it

goes into the postfix queue

10 | num 30 | num * | op20 | num + | op

infix: op-stack:

postfix:

Finally, all operators are

popped and put in postfix

queue

Let's apply the same algorithm to the expression "10 * 20 + 30":

10 | num 30 | num * | op 20 | num + | opinfix: op-stack:

postfix:

At the start, postfix queue and

operator stack are empty

10 | num

30 | num * | op 20 | num + | opinfix: op-stack:

postfix:

First token is 10 (number), so it

goes into the postfix queue

10 | num

30 | num

 * | op

20 | num + | opinfix: op-stack:

postfix:

Next token is * (operator) and

stack is empty, so it goes into

the stack

10 | num

30 | num

 * | op20 | num

 + | opinfix: op-stack:

postfix:

Next token is 20 (number), so it

goes into the postfix queue

10 | num

30 | num

 * | op20 | num + | op

infix: op-stack:

postfix:

Next token is + (operator) but

token at top of stack has higher

precedence. Stack is popped

and + is pushed into it

10 | num 30 | num * | op20 | num + | op

infix: op-stack:
postfix:

Next token is 30 (number), so it

goes into the postfix queue

10 | num 30 | num * | op20 | num + | op

infix: op-stack:

postfix:

Finally, all operators are

popped and put in postfix

queue

Ignoring any exceptions, this algorithm translates roughly into the following Java code (it will not

yet compile):

protected static Queue toPostfix(Queue infix) throws TokenException

{ Stack stack = new Stack();

 Queue postfix = new Queue();

 while (!infix.isEmpty())

 { Object token = infix.dequeue();

 if (token instanceof TokenNumeric)

 postfix.enqueue(token);

 else if (stack.isEmpty())

 stack.push(token);

Java by Definition Chapter 7: Sequential Data Structures Page 104 of 112

Bert G. Wachsmuth DRAFT April 2009

 else if (stack.peekToken().order() < token.order())

 stack.push(token);

 else

 { while ((!stack.isEmpty()) &&

 (stack.peekToken().order() >= token. order()))

 postfix.enqueue(stack.popToken());

 stack.push(token);

 }

 }

 while (!stack.isEmpty())

 postfix.enqueue(stack.popToken());

 return postfix;

}

This code, of course, will not compile: first we are not catching a QueueExcpetion when we dequeue

an object from the expression queue, and second our Token classes do not have an order method to

determine the precedence of an operator. And most importantly, our algorithm does not take into

account that the expression could contain parenthesis.

So, we will first adjust our algorithm to ensure it handles parenthesis correctly, then provide a

complete implementation of the toPostfix method (which means adding an order method to the

appropriate Token class). To allow for parenthesis turns out to be easy:

 An open parenthesis is pushed into the operator stack.

 When a closing parenthesis is found all operators up to and including the first open

parenthesis are popped from the stack.

 The operators are added to the postfix queue in the order they are popped, while the

parentheses are ignored.

Before we can create the complete method we need to adjust our TokenOperator class so that it can

identify open or closing parenthesis and return the precedence of an operator. We will give the

operators "+" and "-" precedence 1, "/" and "*" precedence 2, and "^" gets precedence 3. We also need

to make sure that operators are still added to the operator queue if an open parenthesis is on top of

the stack. Therefore, the open bracket will get precedence 0. To make sure that a closing parenthesis

forces all operators to be popped we give the closing bracket a precedence of 9. Here is our new

TokenOperator class, with the new fields and method in italics:

public class TokenOperator extends Token

{ private static String OPERATORS = "+-/*^()";

 private static int[] PRECEDENCE = {1,1,2,2,3,0,9};

 private String token;

 public TokenOperator(String _token) throws TokenException

 { if (OPERATORS.indexOf(_token) >= 0)

 token = _token;

 else

 throw new TokenException("invalid operator: " + _token);

 }

 public boolean isOpenParen()

 { return token.equals("("); }

 public boolean isCloseParen()

 { return token.equals(")"); }

 public int order()

 { return PRECEDENCE[OPERATORS.indexOf(token)]; }

 public static boolean isValidOp(char op)

 { return (OPERATORS.indexOf(op) >= 0); }

 public String toString()

 { return "Operator: " + token; }

}

Java by Definition Chapter 7: Sequential Data Structures Page 105 of 112

Bert G. Wachsmuth DRAFT April 2009

Note the trick we are using to return the correct precedence for an operator: we find the position of

the token in the list of operators and return the integer at that position in the array of precedence

numbers. That works because the order of the operators in the field OPERATORS matches the order of

the precedence integers in the field PRECEDENCE.

Here is the finished version of the toPostfix method, using our new TokenOperator class and the

above algorithm adjusted to handle parenthesis:

protected static Queue toPostfix(Queue infix) throws TokenException

{ Stack stack = new Stack();

 Queue postfix = new Queue();

 try

 { while (!infix.isEmpty())

 { Object token = infix.dequeue();

 if (token instanceof TokenNumeric)

 postfix.enqueue(token);

 else

 { TokenOperator op = (TokenOperator)token;

 if (op.isOpenParen())

 stack.push(op);

 else if (op.isCloseParen())

 { while (!((TokenOperator)stack.peek()).isOpenParen())

 postfix.enqueue(stack.pop());

 Object dummy = stack.pop();

 }

 else if (stack.isEmpty())

 stack.push(op);

 else if (((TokenOperator)stack.peek()).order() < op.order())

 stack.push(op);

 else

 { while ((!stack.isEmpty()) &&

 (((TokenOperator)stack.peek()).order() >= op.order()))

 postfix.enqueue(stack.pop());

 stack.push(op);

 }

 }

 }

 while (!stack.isEmpty())

 { if (!((TokenOperator)stack.peek()).isOpenParen())

 postfix.enqueue(stack.pop());

 else

 throw new TokenException("unmatched bracket");

 }

 return postfix;

 }

 catch(StackException se)

 { throw new TokenException("unmatched bracket or invalid input"); }

 catch(QueueException qe)

 { throw new TokenException("unknown exception"); }

}

Java by Definition Chapter 7: Sequential Data Structures Page 106 of 112

Bert G. Wachsmuth DRAFT April 2009

The method is easy to check: first add this

method to the Calculator class of the

previous example, then change the line in

the main method of that class:

tokens = tokenize(input);

to the line

tokens =

 toPostfix(tokenize(input));

and run it. It will now print out the postfix

notation of an expression entered as a string

in infix notation. As a side benefit, our

toPostfix method can also determine if

parentheses are matching.

Figure 8.2.2 shows a sample run of our

current Calculator program.

Figure 8.2.2: Trial run of Calculator

Stage 3: Postfix Evaluation

Now we are ready to finish our calculator program. We can so far turn a string into an expression of

valid tokens and convert these tokens from infix to postfix notation. What is left is a method that

evaluates an expression in postfix notation. However, that will be easy, which is of course why

postfix notation is so useful.

Example 8.2.4:

Our goal is to create a calculator that can evaluate expressions involving numbers,

standard round parenthesis, and the binary operators +, -, *, /, and ^, using the "natural"

order of precedence of these operators. In examples 7.2.1 and 7.2.3 we created methods to

turn a string representing a mathematical expression into a queue of tokens, and to

convert that queue into postfix notation. Create a method evaluatePostfix that can

evaluate a queue of tokens in postfix notation and use it to finish a complete line-based

calculator program.

The algorithm to evaluate a postfix expression where every operator is a binary operator (i.e.

requires two numeric inputs such as +, -, *, /, and ^) is simple:

 start with the first token in the postfix queue

 if token is a number, push it into a stack

 otherwise (token is an operator) do the following:

 pop two numbers from the operator stack if possible

 evaluate the operator token with the two numbers just popped and push the numeric

answer back into the stack

 continue this process with the next token

Java by Definition Chapter 7: Sequential Data Structures Page 107 of 112

Bert G. Wachsmuth DRAFT April 2009

 when done, there should be exactly one number in the stack: the answer. Otherwise there's

been an error in the expression

If the stack was empty when trying to pop two numbers from it, there also must be an error in the

original expression.

This algorithm is simple, so we could proceed to code the method right away. However, we have not

settled the question of how exactly we are going to evaluate any expression, or - more precisely - who

is going to do the evaluation. In fact, the TokenOperator knows the valid operators, and therefore it,

too, should be responsible for evaluation. That would be beneficial because if we later added another

legal binary operator such as the '%' operator, the only class to change would be the TokenOperator

class. We therefore add an evaluate method to TokenOperator that takes two numbers (doubles) as

input and evaluates these numbers according to the current operator (which is a field of the object):

public class TokenOperator extends Token

{ /* fields and methods as before, but add this new method: */

 public TokenNumeric evaluate(double num1, double num2)

 throws TokenException

 { if (token.equals("+"))

 return new TokenNumeric(num2 + num1);

 else if (token.equals("-"))

 return new TokenNumeric(num2 - num1);

 else if (token.equals("*"))

 return new TokenNumeric(num2 * num1);

 else if (token.equals("/"))

 return new TokenNumeric(num2 / num1);

 else if (token.equals("^"))

 return new TokenNumeric(Math.pow(num2, num1));

 else

 throw new TokenException("invalid token, can not evaluate");

 }

}

Now we can implement the evaluatePostfix method according to the above algorithm as follows:

protected static double evaluatePostfix(Queue postfix) throws TokenException

{ Stack numbers = new Stack();

 try

 { while (!postfix.isEmpty())

 { Object token = postfix.dequeue();

 if (token instanceof TokenOperator)

 { TokenNumeric n1 = (TokenNumeric)numbers.pop();

 TokenNumeric n2 = (TokenNumeric)numbers.pop();

 TokenOperator op = (TokenOperator)token;

 numbers.push(op.evaluate(n1.getNumber(),n2.getNumber()));

 }

 else

 numbers.push(token);

 }

 TokenNumeric answer = (TokenNumeric)numbers.pop();

 if (numbers.isEmpty())

 return answer.getNumber();

 else

 throw new TokenException("invalid expression");

 }

 catch(StackException se)

 { throw new TokenException("invalid expression"); }

 catch(QueueException qe)

 { throw new TokenException("unknown error"); }

}

Java by Definition Chapter 7: Sequential Data Structures Page 108 of 112

Bert G. Wachsmuth DRAFT April 2009

We attempt to pop two numbers from the stack without checking whether there really are two tokens

available. After all, if the postfix queue does not represent a valid mathematical expression there

may not be two numbers in the stack. However, in that case a pop operation would result in a

StackException, which we catch and re-throw as an appropriate TokenException. In fact, we re-

throw every exception as an appropriate TokenException, which simplifies our code quite a lot.

Hence, our method not only evaluates mathematically correct expressions, but also acts as the final

check for correctness of our expression.

Now we can use our three methods tokenize, toPostfix, and evaluatePostfix to conclude our

Calculator program in its entirety. The class is similar to before, but it does not have to print out

any stacks or queues any more.

public class Calculator

{ protected static double evaluatePostfix(Queue postfix)

 throws TokenException

 { /* as above */ }

 protected static Queue toPostfix(Queue infix) throws TokenException

 { /* as before */ }

 protected static Queue tokenize(String input) throws TokenException

 { /* as before */ }

 public static void main(String args[])

 { String prompt = "Calc [q to quit] => ";

 String input = "";

 while (!input.equalsIgnoreCase("q"))

 { if (!input.equals(""))

 { try

 { double ans = evaluatePostfix(toPostfix(tokenize(input)));

 System.out.println(prompt + input + " = " + ans);

 }

 catch(TokenException te)

 { System.err.println(te); }

 }

 System.out.print(prompt);

 input = Console.readString();

 }

 }

}

Here are a few calculations with our new Calculator program:

Java by Definition Chapter 7: Sequential Data Structures Page 109 of 112

Bert G. Wachsmuth DRAFT April 2009

Figure

8.2.3: Output of Calculator Interpreter

Our calculator program, i.e. the three static methods tokenize, toPostfix, and evaluatePostfix,

rely on the fact that all legal operators are binary operators, i.e. they require two numbers as input.

That seems to be a valid assumption at first glance, but one particular operator could be a binary as

well as a unitary operator (a unitary operator applies to only one number). Of course it is the minus

sign '-':

 used as a binary operator, it subtracts the second number from the first

 used as a unitary operator, it changes the sign of its argument

But our Calculator methods require binary operators. Therefore, our calculator can not handle

perfectly legal mathematical expressions such as -10 + 10 (but 10 - 10 would work fine, of course).

For expressions such as -10 + 10 our program would produce an exception with the message

"TokenException: invalid expression".

Fixing this problem is a typical good news, bad news situation:

 The bad news is that virtual all our methods and classes need to be modified to allow for the

unitary operator '-' to work correctly, and it is not entirely trivial to do it correctly.

 The good new is that once the single unitary operator '-' works correctly, then it is very easy

to make other unitary operators such as sine, cosine, tan, and in fact all standard

mathematical functions work correctly.

We will leave further the details as an exercise, however.

Java by Definition Chapter 7: Sequential Data Structures Page 110 of 112

Bert G. Wachsmuth DRAFT April 2009

Chapter Summary

Java by Definition Chapter 7: Sequential Data Structures Page 111 of 112

Bert G. Wachsmuth DRAFT April 2009

Java by Definition Chapter 7: Page 112 of 112

Bert G. Wachsmuth DRAFT April 2009

