
Java by Definition Chapter 5: Exceptions and Threads Page 1 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

Chapter 5: Exceptions and Threads

In the first four chapters we saw the basics of object-oriented programming, getting a glimpse of

some of the graphics capabilities of Java. We have also seen a fair amount of examples and

definitions about how to put together applications, complete with menus, dialog boxes, and other

graphics user interface elements. In chapter 6 will further explore Java's graphical abilities, as well

as take a look at its multimedia capabilities.

As it turns out, to properly create more advanced programs we will often need the ability to have one

program do several activities at once, such as loading a picture while displaying a frame, or playing

some music while doing a long computation. Java does support concurrently executing pieces of code

combined in one program using a concept called "threads". Therefore, we need to investigate threads

before going into details about images and animations. However, threads are not as simple as our

previous programs: threads of concurrently executing code can be "disturbed" for many reasons.

Therefore, they will need a mechanism to effectively and flexibly communicate any problems to

another part of a program that might rely on the thread to finish its part of the task.

This mechanism of handling potential errors while a particular thread executes turns out to be so

useful that Java has adopted it as a general error-handling scheme called a "try-catch" block. To be

sure, Java's error-handling mechanism does not originate with threads, but was adopted from a

similar mechanism in the programming language C++. However, we were able to avoid, for the most

part, dealing with this mechanism in our previous examples, but to continue we need to understand

the basic workings of this scheme. Therefore, we will start this chapter by explaining the "try-catch"

error-handling mechanism and then introduce threads. With these foundations we can discuss

Swing, loading images, playing sounds, and other more advanced techniques in the next chapters.

Quick View

Here is a quick overview of the topics covered in this chapter.

(*) These sections are optional

5.1. Error and Exception Handling
The Throwable Hierarchy; Throwing an Exception; Catching an Exception; finally – the last

word on exceptions

5.2. Basic Threads
The Thread Class; Threads via the Runnable Interface

(*) 5.3. Synchronized Threads and Methods
Data Corruption using Multiple Threads; Synchronizing Threads; Wait, Notify, and Deadlocks

Java by Definition Chapter 5: Exceptions and Threads Page 2 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

5.1. Error and Exception Handling

Programming errors are a common problem while you are creating a program, applet, or a class. In

fact, virtually nobody can create a reasonably complex application that is free of errors right from the

start. Therefore, the goal is not to create a problem-free class on the first try, but to extensively test

and rewrite the class until you can be reasonably sure that it is error-free. Even if you have tested a

program or class extensively and all tests indicate that it performs as you intended, there will

always be circumstance beyond your control. For example:

• If your program gets data from a network connection, what if the server delivering the data

goes down?

• If you are printing a long document, what if the printer runs out of paper?

• What should your program do with a user who does not follow directions and enters a string

when explicitly asked to enter an integer?

• What if your program asks the user to initialize an array of a specific size, but there is not

enough memory available to accommodate the size the user specified?

• What if your program tries to divide zero by zero?

Therefore, since programs run in an imperfect world and are used by imperfect people, there is a

need for an elaborate and flexible mechanism to deal with more or less unexpected or unusual errors.

Indeed, when a class encounters an error, it should attempt to:

• return to a safe and known state

• enable the users to execute other commands

• save all work if possible

• exit without further harm if necessary

Before finding out how to achieve these goals, let's take a look at an example where we intentionally

produce a few errors:

Example 5.01: Creating intentional errors

Create a program that attempts to reference a variable pointing to null, tries to access an array
element with an incorrect index, and wants to retrieve a character from a string at a negative index.
Execute the program and describe the error messages that you see.

The first thing we need to decide is whether to use a GUI, or Frame-based program or a simple

program without GUI elements. We have already seen error messages for non-GUI based programs

in chapter 2, so we decide on using a Frame with buttons to produce the errors this time:

• use one field of type Button for each error to produce, plus one more button to quit the

program1

• add a field containing an array, another field with a well-defined String, and one more field

with a String set to null

• create the class by extending Frame and implementing ActionListener

• in the constructor, layout the buttons in a grid and show the frame

1 At this stage it is unclear what happens when a program encounters an error. It might completely quit, in which
case an explicit quit button would not be necessary. But as we will see in definition 5.02, frame-based programs will
try to continue running even if they encounter an error.

Java by Definition Chapter 5: Exceptions and Threads Page 3 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

• in the actionPerformed method, create the various errors when the corresponding buttons

are pressed

• in the main method, instantiate an instance of the class

Here is the code:

import java.awt.*;
import java.awt.event.*;

public class IntentionalErrors extends Frame implements ActionListener
{ public Button nullVariable = new Button("Null Variable");
 public Button arrayIndex = new Button("Array index invalid");
 public Button stringIndex = new Button("Negative string index");
 public Button quit = new Button("Quit");
 private double A[] = new double[10];
 private String string = "Bert";
 private String nada = null;

 public IntentionalErrors()
 { setLayout(new GridLayout(4,1));
 add(nullVariable); nullVariable.addActionListener(this);
 add(arrayIndex); arrayIndex.addActionListener(this);
 add(stringIndex); stringIndex.addActionListener(this);
 add(quit); quit.addActionListener(this);
 validate();
 pack();
 setVisible(true);
 }
 public void actionPerformed(ActionEvent e)
 { if (e.getSource() == quit)
 System.exit(0);
 else if (e.getSource() == nullVariable)
 System.out.println(nada.substring(0,3));
 else if (e.getSource() == arrayIndex)
 A[10] = 10;
 else if (e.getSource() == stringIndex)
 System.out.println(string.charAt(-1));
 }
 public static void main(String args[])
 { IntentionalErrors ie = new IntentionalErrors(); }
}

When we compile and run this class, we see the following error messages:

Figure 5.01: IntentinalErrors program after clicking the �ull Variable button

Java by Definition Chapter 5: Exceptions and Threads Page 4 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

• When clicking on the nullVariable button:

Exception occurred during event dispatching:
java.lang.NullPointerException
 at IntentionalErrors.actionPerformed(IntentionalErrors.java:27)
 at java.awt.Button.processActionEvent(Button.java:254)
 at java.awt.Button.processEvent(Button.java:227)
 at java.awt.Component.dispatchEventImpl(Component.java:1764)
 at java.awt.Component.dispatchEvent(Component.java:1704)
 at java.awt.EventDispatchThread.run(EventDispatchThread.java:63)

• When clicking on the arrayIndex button:

Exception occurred during event dispatching:
java.lang.ArrayIndexOutOfBoundsException: 10
 at IntentionalErrors.actionPerformed(IntentionalErrors.java:28)
 at java.awt.Button.processActionEvent(Button.java:254)
 at java.awt.Button.processEvent(Button.java:227)
 at java.awt.Component.dispatchEventImpl(Component.java:1764)
 at java.awt.Component.dispatchEvent(Component.java:1704)
 at java.awt.EventDispatchThread.run(EventDispatchThread.java:63)

• When clicking on the stringIndex button:

Exception occurred during event dispatching:
java.lang.StringIndexOutOfBoundsException: String index out of range:-1
 at java.lang.String.charAt(String.java:398)
 at IntentionalErrors.actionPerformed(IntentionalErrors.java:31)
 at java.awt.Button.processActionEvent(Button.java:254)
 at java.awt.Button.processEvent(Button.java:227)
 at java.awt.Component.dispatchEventImpl(Component.java:1764)
 at java.awt.Component.dispatchEvent(Component.java:1704)
 at java.awt.EventDispatchThread.run(EventDispatchThread.java:63)

The first thing to notice is that these errors are not called errors but exceptions. For each exception,

a pretty accurate and easy to understand message is printed out:

• a NullPointerException occurred in the actionPerformed method in line 27 of the

IntentionalErrors.java source code

• an ArrayIndexOutOfBoundsException supposedly occurred in line 28 of the actionPerformed

method of the IntentionalErrors.java source code (the offending line is actually in line

29 of the source code)

• a StringIndexOutOfBoundsException occurred in line 31 of the actionPerformed

method of the IntentionalErrors.java source code

As the error messages indicate, each method causing the error was in turn called by other methods

and we see the entire hierarchy of method calls leading to our exception.

Another important thing to notice is that even though we get these error messages, our program

does not crash. We are still able to press other buttons, including the quit button to exit the program

nicely. We will see later that this is a common feature of how the JVM handles errors.

�

Now it is time to investigate errors and exceptions in more detail before explaining what we can do

to intercept these errors and provide our own error-handling mechanism.

Java by Definition Chapter 5: Exceptions and Threads Page 5 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

The Throwable Hierarchy

Java classifies possible errors into a hierarchy of classes, starting with the base class Throwable. We

need to first understand the basic classes involved in this hierarchy before giving any examples:

The Throwable Classes

The Throwable class is the superclass of all errors and exceptions in the Java language. Only

objects of this class or extending this class can be handled by Java's error-handling mechanism.

A Throwable class contains a snapshot of the current state of the program and it usually contains

a message string that gives more information about the particular error. The Java API defines

the Throwable class as follows:

 public class Throwable extends Object
 { // Constructors
 public Throwable()
 public Throwable(String message)
 // Selected methods
 public String getMessage()
 public String toString()
 public void printStackTrace()
 }

All classes that extend Throwable should override both constructors, one without input argument

and one with a String input argument.
2

When a Java program encounters an unanticipated error, it – somehow – instantiates an object that

extends this Throwable class. That object will contain information about the error and the current

state of the object that caused the error. It can be queried to print out this information on the system

console. In addition, by appropriately interpreting the object your code can make an attempt to catch

the error, try to set it right, or at the very least perform proper cleanup and damage control.

Throwing an Exception

Almost any method in a class can change the normal flow of execution by throwing an exception.

When that happens, the method exits immediately and does not return a value. Also, control is not

returned to the code calling the method but instead to an error handler that can deal with this

particular error condition, if possible.

If no error handler can be found, then non-GUI programs will stop immediately, while GUI-

based programs will try to continue running, displaying a default error message on the system

console.

The Throwable class is the immediate parent class for two other classes, the Error class and the

Exception class3:

2 In "real life" you will hardly ever create a class that directly extends Throwable. It is much more common to

extend Exception instead, as described in definition 5.06
3 See figure 5.02

Java by Definition Chapter 5: Exceptions and Threads Page 6 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

The Error and Exception Classes

The Error class indicates that a serious problem has occurred due to an abnormal condition. If

such an error occurs, little can be done to correct the situation. Any method can cause an Error

without any further specifications, but it rarely happens.

The Exception class indicates error conditions that a reasonable application should have

attempted to correct. Methods that anticipate some types of an Exception need to declare this in

their header using the special keyword throws. Some types of Exception can occur without

further specifications.

Both classes extend Throwable and have constructors similar to Throwable.

In other words, all errors that can occur in a Java program are classified into two categories:

• Errors, which are hopefully not going to occur in your program. If they do, there's not much

than can be done and your program will most likely crash.

• Exceptions, which may occur in any program. If they do occur, the program should attempt to

rectify the situation or at the very least return the program to a known and controlled state,

allowing the user to continue working in your application.

One type of exception that could occur frequently is the so-called "Runtime" exception (as happened

in our previous example). As is usual in Java, these types of errors are defined via an appropriate

class:

Software Engineering Tip: The RuntimeException class and its subclasses can be instantiated

at any time during the normal operation of the Java Virtual Machine. They include, among

others, arithmetic exceptions, attempting to access a variable set to null, and trying to refer to an

array element with an invalid index. The RuntimeException class extends the Exception class.

Exceptions of this type should be prevented by standard programming techniques, not using the

try-catch mechanism to be defined later.4

Example 5.02: Preventing runtime exceptions

In our previous example, we have intentionally caused various runtime exceptions. Prevent these
exceptions using standard programming techniques.

Of course, since we caused these exceptions intentionally and the particular code really does not

serve any meaningful purpose, we could simply remove the offending lines. However, runtime errors

are usually easy to prevent using several well-placed if statements:

The offending lines are all in the actionPerformed method, so we only list that method again with

the new if statements in bold and italics.

public void actionPerformed(ActionEvent e)
{ if (e.getSource() == quit)
 System.exit(0);
 else if (e.getSource() == nullVariable)

4 It is possible to use the try-catch block introduced in definition 5.07 to catch a Runtime exception. However, these

types of exceptions should not occur in the first place and can usually be prevented with appropriate if statements.

Java by Definition Chapter 5: Exceptions and Threads Page 7 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

 if (nada != null)

 System.out.println(nada.substring(0,3));
 else if (e.getSource() == arrayIndex)
 if (10 < A.length)

 A[10] = 10;
 else if (e.getSource() == stringIndex)
 if (-1 >= 0)

 System.out.println(string.charAt(-1));
}

�

In this particular example, the if statements may seem somewhat artificial. However, they

illustrate a general principle for preventing a RuntimeException:

Software Engineering Tip: The two most common runtime exceptions are accessing a variable

that points to null and accessing an invalid element in an array. To prevent these exceptions:

• before accessing a reference variable that may not be initialized properly, first test if it is

pointing to null before accessing it

• when there is a possibility that an array element could be accessed with an index that is out

of range for the particular array, first test if the index variable is greater than or equal to

zero and less then the length of the array

In other words, a RuntimeException could occur virtually everywhere in a program and it is easily

preventable without too much trouble. That separates this type of exceptions from othes:

Implicit and Explicit Errors

An implicit error or exception is any error that derives from the Error or the RuntimeException

class. Every other type of exception is called an explicit exception.

• Implicit exceptions can occur in any class or method. In the case of a RuntimeException it is

easily prevented using strategically placed if statements. In the case of an Error, there is not

much than can be done about it.

• Explicit exceptions can only occur in methods that specifically declare this in their method

header (see below for details).

Here is an illustration that shows how the major classes involved in the Throwable hierarchy are

related:

Java by Definition Chapter 5: Exceptions and Threads Page 8 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

getMessage()
toString()
printStackTrace()

Throwable

Exception

IOExceptionRuntimeException InterruptedException

Error

Implicit Errors Explicit Errors

Figure 5.02: Exception and Error Hierarchy

In other words, we should not worry about an Error (since there is little to be done about it). We

should also make an effort to prevent a RuntimeException from occurring, and if one does occur, the

blame rests with the programmer. Explicit exceptions, however, are a different story, and we have

different options for dealing with them.

Here is a list of the more commonly occurring exception classes5. For more details, please refer to the

Java API. First, here are those exceptions that are usually preventable (most extend

RuntimeException):

Exceptions in Package java.lang
ArithmeticException An exceptional arithmetic condition has occurred.
ArrayIndexOutOfBoundsException An array has been accessed with an illegal index.
ArrayStoreException An attempt has been made to store the wrong type of

object into an array
ClassCastException Attempted to cast an object to a subclass of which it is

not an instance.
IllegalArgumentException A method has been passed an incorrect argument.
IllegalThreadStateException A thread is not in an appropriate state for the

requested operation.
InterruptedException A thread is waiting, sleeping, or otherwise paused for

a long time and another thread interrupts it using the

interrupt method in class Thread.
NoSuchFieldException Signals that the class doesn't have a field of a

specified name.
NoSuchMethodException A particular method cannot be found.
NullPointerException An application attempts to use null in a case where

an object is required.
NumberFormatException An application has attempted to convert a string to

one of the numeric types, but that the string does not

have the appropriate format.
SecurityException Indicates a security violation.

5 To be sure, many other exceptions can occur in other packages, but the ones listed above occur most frequently
and are quite sufficient to understand the idea.

Java by Definition Chapter 5: Exceptions and Threads Page 9 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

StringIndexOutOfBoundsException A String index is either negative or greater than or

equal to the size of the string.

Table 5.03: Exceptions in package java.lang

The java.awt package also contains a few exceptions, but they rarely occur:

Exceptions in Package java.awt
AWTException An Abstract Window Toolkit (AWT) exception has

occurred.
IllegalComponentStateException An AWT component is not in an appropriate state for

the requested operation.

Table 5.04: Exceptions in package java.awt

The next group of exception relates to input/output (I/O) operations. These errors occur commonly

when reading data from disk or from a network connection. Usually, little can be done from stopping

them from occurring, but a lot can be done to stop them from doing any damage.

Exceptions in Package java.io
EOFException An end of file or end of stream has been reached unexpectedly

during input. Mainly used by data input streams since most

other input streams return a special value on end of stream. (see

chapter 9 for more information about streams).
FileNotFoundException A file could not be found.
IOException An I/O exception of some sort has occurred.
InterruptedIOException An I/O operation has been interrupted.

Table 5.05: Exceptions in package java.io

Finally, there are exceptions related to network programming from the java.net package. We will see

them again in detail in chapter 9 and 10, but they are listed here for completeness.

Exceptions in Package java.net
ConnectException Error while attempting to connect to a remote address and

port, typically because the connection was refused
MalformedURLException An incorrect URL was created.
NoRouteToHostException Error while attempting to connect to a remote address and

port, typically because the remote host cannot be reached.
ProtocolException Error in the underlying protocol, such as a TCP error.
UnknownHostException The IP address of a host could not be determined.
UnknownServiceException An unknown service exception has occurred.

Table 5.06: Exceptions in package java.net

These exceptions are related in various hierarchies. Here are these exceptions again, this time sorted

by their relationships with each other:

java.lang.Exception

AWTException
InterruptedException
IOException

EOFException
FileNotFoundException
InterruptedIOException
MalformedURLException
ProtocolException
SocketException

ConnectException
NoRouteToHostException

UnknownHostException
UnknownServiceException

NoSuchFieldException

Java by Definition Chapter 5: Exceptions and Threads Page 10 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

NoSuchMethodException
RuntimeException

ArithmeticException
ArrayStoreException
ClassCastException
IllegalArgumentException

NumberFormatException
IllegalStateException

IllegalComponentStateException
IndexOutOfBoundsException

ArrayIndexOutOfBoundsException
StringIndexOutOfBoundsException

NullPointerException
SecurityException

Figure 5.07: Relationships of common exception classes

Throwing an Exception

We have seen how implicit exceptions are thrown automatically whenever they occur. Explicit

exceptions, however, are thrown by methods only when these methods explicitly declare that

possibility:

Throwing an Explicit Exception

To throw an explicit exception, the method header must specify the type of exception(s) this

method can encounter, using the syntax:

 [modifiers] returnType methodName throws listOfExceptionTypes
 { // body of message, including
 throw new ExceptionType(inputList);
 }

where listOfExceptionTypes is a comma-separated list of special classes, each of which

extends the Exception class, and ExceptionType is of one of these classes.

A method that overrides an inherited method can only throw exceptions of the same type as its

parent method, or less. In particular, if the parent method does not throw any exceptions neither

can the inherited one.

Example 5.03: Throwing an explicit exception

If you were to create a method double stringToDouble(String number) that attempts to

convert an input string to a double number, what are the possible issues that you might be facing?
Would "throwing an exception" be a proper way to deal with any problems? If so, create the
appropriate method header.

Aside from the fact that we would have to write the actual conversion code, a method to convert a

String to a double may not always succeed: if the input string does not represent a double number,

it should fail. But since the method stringToDouble must return a double number – as promised in

the method header – the question is which number should be returned? If the input string does not

represent a proper double, our method, of course, could return 0.0 as a default value. But then a

method that is using stringToDouble does not know whether 0.0 was indeed the correctly converted

string or the default value because string conversion failed.

Java by Definition Chapter 5: Exceptions and Threads Page 11 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

One can cook up some roundabout ways to notify the calling method of any errors that may have

occurred, but it would probably not be an elegant solution. Instead, we simply indicate that our

method could throw a NumberFormatException:

double stringToDouble(String number) throws NumberFormatException
{ // actual conversion code.
 // If no error occurs:
 return convertedNumber;
 else
 throw new NumberFormatException("tried to convert: " + number);
}

If no error occurs during the conversion, our method will return the converted number. If an error

occurs, it instead throws a NumberFormatException, which seems appropriate for this type of

exception. That implies that in this case our method does not actually have to return a double, even

though it specifies in the method header that it would do so under normal circumstances. If the error

is thrown, the method that has called stringToDouble will be searched for a proper error handling

code6, and will not continue on its normal path of execution.

�

Of course you can also create your own custom-made exceptions that can be thrown by your methods.

After all, the above definition only specifies to throw an object of a class that extends Exception. If

none of the available exception classes are appropriate for whatever situation you have in mind,

simply create your own:

Creating your own Exception

If a method needs to throw an exception but none of the build-in exception classes seem

appropriate, you can create your own Exception class as follows:

• Create a class that extends Exception, or another existing exception class

• Give your class a default constructor with no arguments that calls the constructor of its

super class with an appropriate error message as input

• Add a second constructor with a single String argument that calls the constructor of its

super class with an appropriate error message as input, including the input string

Example 5.04: Throwing a custom-made exception

In order to save data into a database, you need to make sure that some text that a user enters into a
form does not exceed a certain length. Design an appropriate object to handle this situation.

The appropriate object might be a dialog window or a frame containing text fields. Before the data is

– somehow – written to the database, a method could simply cut off any extra characters if an input

string is too long. However, that approach is not acceptable for two reasons:

• we must inform the user if our program modifies the data that the user enters and expects to

save to the database (perhaps the user might be able to rephrase the data if informed of the

problem)

• we have not really identified the object that may cause and possibly correct the problem

6 See definition 5.07

Java by Definition Chapter 5: Exceptions and Threads Page 12 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

The problem lies in the fact that a text field can contain text of any length. Why not design a special

text field that can contain only strings of up to a fixed length? Therefore, our object should extend

TextField in such a way that it should not be possible to extract from it a string that exceeds a

certain length. If one tries the object will not return the text but instead throw an exception.

Therefore, we want to create two objects, or rather classes:

• a LongStringException to indicate what this particular exception will mean

• a ShortTextField extending TextField that will throw an exception when someone tries to

extract text that is too long

Note that we should first check the available exceptions in our above table to see if one would be

appropriate for this situation. In our case, none of them seems appropriate so we will design our

own:

public class LongStringException extends Exception
{ public LongStringException ()
 { super("String too long"); }
 public LongStringException (String msg)
 { super(msg); }
}

That's all we have to do to create a new exception. Note that almost all custom-made exceptions are

that easy to create:

• find an appropriate name for that class and extend the Exception class, or another

appropriate subclass of Exception

• create two constructors, one with void input and the other to input a particular message

string

As for our class extending TextField, we know from chapter four that the method to retrieve text

from a TextField is String getText(), so we would try to override that method:

import java.awt.*;

public class ShortTextField extends TextField
{ private final static int MAX = 10;

 public String getText() throws LongStringException
 { if (super.getText().length() <= MAX)
 return super.getText();
 else
 throw new LongStringException("String too long. Max: " + MAX);
 }
}

This class, however, will not compile but instead give us the following error:

Java by Definition Chapter 5: Exceptions and Threads Page 13 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

Figure 5.08: Error message compiling the LongStringException class

Our method getText overrides the method in TextField. But the original method does not throw an

exception, so according to our definition neither can this method. Therefore, we need to create a new

method for our ShortTextField, where the changed text is in bold and italics:

import java.awt.*;

public class ShortTextField extends TextField
{ private final static int MAX = 10;

 public String getShortText() throws LongStringException
 { if (getText().length() <= MAX)
 return getText();
 else
 throw new LongStringException("String too long. Max: " + MAX);
 }
}

When the method getShortText is used, it will only return the text if it is of "legal" length or less.

Otherwise, it will instead throw a LongStringException and the JVM will start searching for an

appropriate error handler to handle this "error".

�

Note that we have not actually achieved our goal: it is still possible to use the inherited getText

method of the ShortTextField class to retrieve the text even if it is longer than the legal length. But

as long as the method getShortText is used, it will only release the text if it is of "legal" length.7

Since it is so easy to throw an exception, you might be tempted to throw them in many of the classes

you design. After all, whenever you encounter a problem, you simply throw an exception instead of

figuring out how to handle the particular situation. However, throwing an exception does not really

solve the problem, it just passes it along to some other method. Eventually, someone needs to handle

the exception. Therefore, before learning how to create the code to handle exceptions, here is a rule of

thumb:

Software Engineering Tip: When creating a method that needs to deal with difficult

situations, you may decide to instead throw an exception: But

• If a simple test can prevent the exception from occurring, prevent it (this applies in

particular to RuntimeExceptions)

• If you know how to properly handle the exception, do so and do not throw an exception

7 Another, perhaps more appropriate solution could have been to attach a KeyListener to the TextField that would
count the number of characters entered and refuse to allow more characters if the maximum size is reached.

Java by Definition Chapter 5: Exceptions and Threads Page 14 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

If you are unsure how to handle the exception, throw it and therefore leave it to another method

to handle it appropriately. This also applies when you call another method, which in turn throws

an exception: you can decide to “re-throw” that exception to propagate it instead of handling it.

Catching an Exception

Now that we know how easy it is to throw exceptions we need to find out how to create the proper

code to handle them. In fact, when exceptions are properly caught they can actually simplify your

code a lot and avoid a multitude of if statements. The idea of handling an exception is simple:

• you know that a method may create an exception because the method must advertise that

fact in the method header

• you "try" to use the method that may create an exception, hoping that no exception will occur

• you provide code to "catch" the exception if and when it happens in addition to the code that

hopes the exception does not happen

Try-Catch Error Handling

To provide error-handling for code that might throw one or more exceptions, you embed the code

that might create an exception inside a try block and the code that is supposed to handle the

exception(s) inside one or more catch blocks, specifying which exception each catch block can

handle.
8

• If any of the code inside the try block throws an exception of the type mentioned in a catch

block, the rest of the code in the try block is skipped and the code of the appropriate catch

block will execute instead.

• If no code inside the try block creates an exception, all catch blocks are skipped entirely. In

either case, execution resumes immediately after the try-catch blocks.

• If an exception is thrown that is not mentioned in any catch block, the method exits

immediately.

Syntax:
 try
 { /* code block that might throw exceptions */ }
 catch(ExceptionType e)
 { /* code to handle an exception of ExceptionType */ }
 [catch (OtherExceptionType oe)
 { /* code to handle an exception of OtherExceptionType */ }]

8 Each catch block can only handle one type of exception, but it could handle a superclass of the particular exception

that could occur. For example, if a method throws a MalformedURLException as well as a ConnectException both

can be caught in a catch block for an IOException because both classes are subclasses of IOException.

Java by Definition Chapter 5: Exceptions and Threads Page 15 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

Example 5.05: Catching exceptions in a try-catch block

In the first example of this section, we saw an example of a program that intentionally created

exceptions, which were subclasses of RuntimeException. Redo this program, embedding the code
into an appropriate try-catch error handling block(s).

Recall the actionPerformed method that contained the code that created the various exceptions:

public void actionPerformed(ActionEvent e)
{ if (e.getSource() == quit)
 System.exit(0);
 else if (e.getSource() == nullVariable)
 System.out.println(nada.substring(0,3));
 else if (e.getSource() == arrayIndex)
 A[10] = 10;
 else if (e.getSource() == stringIndex)
 System.out.println(string.charAt(-1));
}

As we have seen, the exceptions that are generated by this method are:

• NullPointerException: when printing the string nada

• ArrayIndexOutOfBoundsException: when accessing A[10]

• StringIndexOutOfBoundsException: when accessing string.charAt(-1)

Therefore, we could embed the code into the following try-catch block:

public void actionPerformed(ActionEvent e)
{ try
 { if (e.getSource() == quit)
 System.exit(0);
 else if (e.getSource() == nullVariable)
 System.out.println(nada.substring(0,3));
 else if (e.getSource() == arrayIndex)
 A[10] = 10;
 else if (e.getSource() == stringIndex)
 System.out.println(string.charAt(-1));
 }
 catch(StringIndexOutOfBoundsException se)
 { System.out.println("incorrect string index");
 }
 catch(NullPointerException ne)
 { System.out.println("oops, a null pointer");
 }
 catch(ArrayIndexOutOfBoundsException ae)
 { System.out.println("incorrect array index");
 }
}

Then, instead of the previous error messages we would see the above error strings (try it out). Note

that the order in which the catch blocks are listed does not matter. If an exception is generated, the

JVM will search for the appropriate error handler regardless of where it is located.

Actually, all of these exceptions extend RuntimeException, so we could have chosen to instead catch

all of them in one error-handling block:

public void actionPerformed(ActionEvent e)
{ try
 { if (e.getSource() == quit)

Java by Definition Chapter 5: Exceptions and Threads Page 16 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

 System.exit(0);
 else if (e.getSource() == nullVariable)
 System.out.println(nada.substring(0,3));
 else if (e.getSource() == arrayIndex)
 A[10] = 10;
 else if (e.getSource() == stringIndex)
 System.out.println(string.charAt(-1));
 }
 catch(RuntimeException se)
 { System.out.println("caught a RuntimeException: " + se);
 }
}

If you run this code, you will notice that we will only see the string specified in the

System.out.println method, but not the entire sequence of methods leading up to the exception. If

you do want to see that sequence, you can call on the method printStackTrace that every object

extending Exception inherits:

catch(RuntimeException se)
{ System.out.println("caught a RuntimeException: " + se);
 se.printStackTrace();
}

�

Of course, it would be complete overkill to catch these exceptions in a try-catch block. After all, they

could have – and should have – been prevented from occurring with a few simple if statements, as

illustrated above. However, catching exceptions can be put to good use9:

Example 5.06: A reusable DoubleField class

Create a class DoubleField that is similar to a TextField, but it returns the value of the string

contained in the field as a double, if possible, or a default return value if the string does not represent a
double value. Then use that new field in a fully functioning applet.

The new class should look like a TextField so it will extend TextField. In addition to the method

getText and setText that it will inherit we also add methods getNumber and setNumber that will set

and return the appropriate values, and catch any errors if necessary. In addition, the class will

provide for the possibility of defining the default return value in case an error occurs, and allow for

querying it if an error occurred the last time the class was asked to convert a String into a double

value. Here is the code:

import java.awt.TextField;

public class DoubleField extends TextField
{ private boolean error = false;
 private double defValue = 0.0;

 public DoubleField(double number)
 { super(Double.toString(number)); }
 public void setNumber(double number)
 { setText(Double.toString(number)); }
 public double getNumber()
 { try
 { double number = Double.valueOf(getText()).doubleValue();
 setNumber(number);

9 In chapter 8 we will see a lot of examples of how catching exceptions can be quite useful and shorten code
significantly.

Java by Definition Chapter 5: Exceptions and Threads Page 17 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

 error = false;
 return number;
 }
 catch(NumberFormatException nfe)
 { setText("INVALID");
 error = true;
 return defValue;
 }
 }
 public void setDefault(double _defValue)
 { defValue = _defValue; }
 public boolean getError()
 { return error; }
}

To test our new class, we will use the AddingMachine10 applet that we have created in example 4.09.

The code to convert strings into numbers used to be part of the applet. Now our DoubleField will

handle that task automatically. Here is the new code, with the important lines in bold and italics:

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

public class AddingMachine extends Applet implements ActionListener
{ // fields
 private Button addButton = new Button("Add");
 private Button subButton = new Button("Subtract");
 private Button resetButton = new Button("Reset");
 private DoubleField input = new DoubleField (10);

 private DoubleField output = new DoubleField (10);

 private int total = 0;
 // methods
 public void init()
 { setLayout(new FlowLayout());
 add(addButton); add(subButton);
 add(input); add(resetButton);
 add(output);
 addButton.addActionListener(this);
 subButton.addActionListener(this);
 resetButton.addActionListener(this);
 }
 public void start()
 { reset();
 }
 public void actionPerformed(ActionEvent e)
 { if (e.getSource() == addButton)
 total += input.getNumber();

 else if (e.getSource() == subButton)
 total -= input.getNumber();

 else if (e.getSource() == resetButton)
 reset();
 output.setNumber(total);

 }
 private void reset()
 { total = 0;
 input.setNumber(0);

 output.setNumber(0);

10 That applet, incidentally, could handle only integer values at that time and produced unwanted error messages if

an input number did not represent a proper integer. That is because the Integer method parseInt throws an error

that extends RuntimeException and therefore does not need to be caught explicitly.

Java by Definition Chapter 5: Exceptions and Threads Page 18 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

 }
}

In other words, the DoubleField will automatically handle the necessary conversions, if possible,

and catch any errors if necessary. As it so happens, the default return value of 0.0 that the

DoubleField generates in case of an error is appropriate for our example because it is the neutral

element of addition and subtraction.

Figure 5.09: AddingMachine with DoubleField, once used correctly and the second time incorrectly

If another default value would work better, we could have used the setDefault method of a

DoubleField to specify that default return value. In addition, we could have used the getError

method immediately after a call to getNumber to find out whether an error has occurred or not.

�

And of course we could have designed our class to pass on the possible NumberFormatException to

whoever uses the getNumber method (in which case the default return value would not be

necessary). In fact, one of the exercises will ask you to do this.

finally – the Last Word on Exceptions

Occasionally there may be code that needs to be performed whether an exception is thrown or not. A

method could, for example, acquire a Graphics object, then enter into a try-catch block. After the

method is done, it needs to dispose the Graphics object, regardless of whether an exception occurred

or not. While you could of course put the same code into the try as well as the catch block, Java

offers a more appropriate solution for this situation:

The finally block for Exception Handling

A try-catch block can be followed by an additional code block prefaced by the keyword

finally. That finally code block will execute regardless of whether the try block executed

successfully – no exceptions thrown – or whether the catch block executed because of a thrown

exception.

 try
 { /* code block that might throw exceptions */ }
 catch(ExceptionType e)
 { /* code to handle an exception of ExceptionType */ }
 [catch (OtherExceptionType oe)
 { /* code to handle an exception of OtherExceptionType */ }]
 [finally
 { /* code to execute regardless of try or catch block executing */ }

Java by Definition Chapter 5: Exceptions and Threads Page 19 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

Most classes that handle exceptions get by without a finally block. However, it may be useful in

situations where system resources have been acquired that need to be released "manually" no matter

whether an exception occurred or not. Here is a final example, illustrating exactly which line is

executed in which situation in a try-catch-finally block.

Example 5.07: Using finally with a try-catch block

Create a class extending Frame that contains the ShortTextField from example 5.04 as well as a

Quit and a Go button. When the Go button is pressed, retrieve text from the ShortTextField. Since

that class might throw a LongStringException, we need to embed the code into a try-catch

block. In addition, use a finally block and carefully examine which lines of code execute in what
situation.

We use the standard code to extend Frame, implement ActionListener, add the buttons and the

ShortTextField to the Frame and activate the buttons by adding them to the ActionListener. We

also use a TextArea to display the output.

The code containing the try-catch-finally block appears inside the actionPerformed method and

displays lines of text in the display area so that we can follow exactly which line is executing:

import java.awt.*;
import java.awt.event.*;

public class FinalException extends Frame implements ActionListener
{ public Button quit = new Button("Quit"), enter = new Button("Go");
 public ShortTextField text = new ShortTextField();
 public TextArea display = new TextArea(3,25);

 public FinalException()
 { super("Exceptions with Finally");
 quit.addActionListener(this); enter.addActionListener(this);
 Panel input = new Panel(); input.setLayout(new BorderLayout());
 input.add("West", enter); input.add("Center", text);
 input.add("East", quit);
 setLayout(new BorderLayout());
 add("Center",display);
 add("North", input);
 validate(); pack(); setVisible(true);
 }
 public void actionPerformed(ActionEvent e)
 { if (e.getSource() == quit)
 System.exit(0);
 if (e.getSource() == enter)
 { display.setText("");
 display.append("Line before try-catch-finally block\n");
 try
 { display.append("Line before getShortText()\n");
 display.append(text.getShortText() + "\n");
 display.append("Line after getShortText()\n");
 }
 catch(LongStringException se)
 { display.append("Exception occured: " + se.getMessage()+"\n");
 }
 finally
 { display.append("Finally block executes\n");
 }
 display.append("Line after try-catch-finally block\n");

Java by Definition Chapter 5: Exceptions and Threads Page 20 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

 }
 }
 public static void main(String args[])
 { FinalException fe = new FinalException(); }
}

Here is what will happen when you run this program and enter a short "valid" string as well as a

long "invalid" string, clicking on the "Go" button in either case:

Figure 5.10: Following the flow of execution in a try-catch-finally block

In the picture on the left no exception occurs because the text in our ShortTextField contains only

the four-letter word "Java". We can see that first the line before the try-catch block executes, then

the entire try block, then the finally block, and then the line following the entire error-handling

code.

In the picture on the right an exception occurs since the text "Java by Definition" is too long for our

ShortTextField. We can see that the first line of the try block executed, then – after the exception

occurred – execution switched to the catch block. The finally block executed as before, followed by

the line after the error-handling code.

�

Software Engineering Tip: If you are using a method that can throw an exception, you need to

embed it in a try-catch block with an optional finally block. As a rule of thumb:

• If you can find a meaningful way to catch the exception, you should do so.

• Otherwise you should consider propagating or re-throwing it after some processing. You can

also convert one exception into another type and throw the new exception.

• Alternatively, you could decide to completely ignore the exception and add it to the throws

statement in your method header to have someone else handle it.

You can catch multiple exceptions in one block by catching a common superclass but you should

never use an empty catch block to suppress an exception11 completely. Instead of

 catch(Exception e)
 { } // do not use this empty catch block

use as a minimum an appropriate output statement such as

11 Since every exception extends Exception, this 'empty' catch block would always work. However, the exception, of
course, may still occur but no attempt is made to deal with it in any meaningful way. The user is not even informed
that anything out of the ordinary has happened. That will almost certainly jeopardize the integrity of your program.

Java by Definition Chapter 5: Exceptions and Threads Page 21 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

 catch(Exception e)
 { System.err.println("Exception occurred: " + e); }

5.2. Basic Threads

Now that we understand how to handle exceptions we are ready to look at some multitasking

support that Java provides. In this section we will introduce threads and show several examples of

using them. Programs with multiple threads can be difficult to handle, so we will restrict our

attention to the basics of using threads only.

Multitasking

Multitasking is the ability of a computer operating system to run several programs or tasks

simultaneously. To be precise, systems with a single CPU can only run one task at any given time.

However, the operating system can switch multiple programs so quickly in and out of the CPU

that they appear to execute simultaneously.

All modern operating systems such as Windows 95 and better, Macintosh System 7 and above, and

Unix provide automatic support for multitasking in a transparent way. In other words, the user does

not really have to be aware of the necessary – and tricky – details needed to keep track of which part

of what program is currently using the CPU. A user simply starts one or more programs and all of

them will appear to work concurrently. For example, while a web browser is downloading a page

from the web containing lots of images, the user is busy typing a letter in a word processor. It is

expected that the browser will continue retrieving the data from the web regardless of how long the

letter is that is being typed.

This idea of concurrently running several tasks can be pushed one level higher: why not give one

program the ability to perform different tasks simultaneously. This ability is called multithreading

and is also built into most modern operating systems (but not Windows 3.1).

Multithreading

Multithreading is the ability of one class or program to execute and manage multiple strands, or

threads, of execution. Each execution thread can execute independently of other threads, or in

coordination with other threads, as desired. The class has control over its threads, can determine

which ones receive priority, which have access to other class resources, which should execute

and which should remain dormant, etc. The underlying operating system must provide support for

multithreading but the execution of threads is controlled by the class or classes who own the

threads.

In short, multitasking is the simultaneous execution of more than one program and is controlled by

the operating system. Multithreading is the simultaneous execution of more than one thread within

one class and is controlled by a class (with support from the operating system).

Java by Definition Chapter 5: Exceptions and Threads Page 22 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

Most people use multithreaded programs without thinking about the details of the underlying

process.

• A web browser downloads data and displays parts of the available data while continuing to

download more. One thread of execution downloads data and informs another thread that

more data has arrived. The second thread then formats and displays the information as it

becomes available.

• Many word processors perform spell checking "on the fly", i.e. as the user is typing, the

program analyzes the text and flags incorrectly spelled words "immediately". One thread of

execution listens to the keyboard and displays the properly formatted characters on the

screen while another thread "reads" the typed text and flags any spelling mistakes.

thread
0

thread
2

thread
4

thread
1

thread
3

Figure 5.11: Threads simulating Multitasking

Java provides extensive support for creating multithreaded programs and tries its best to negotiate

the underlying details with the operating system without user intervention. As we will see in this

section, Java's mechanism for creating simple programs running two or more independent threads is

surprisingly easy, and even creating multiple synchronized threads is not hard. While Java can not

eliminate all technical details and can occasionally create "deadlock situations" (see section 5.3) its

support for multithreading is so nice that it is worth investigating in some detail. The most extensive

use of thread-based programs involves programs displaying sound, images, or advanced graphics. It

is a good idea to become familiar with multithreading before delving into Swing and Multimedia

programming.

The Thread Class

Thread

A thread is a strand of execution in a program that is executing independently of other threads.

Each thread is in a specific state and has a given priority. The JVM schedules threads according

to their priority and state. A thread can exist in one of four states:

• new a thread has been created but has not yet been started

• runnable a thread has been instantiated and started. The JVM can give the thread time

slices to run (but may not necessarily do so)

• blocked a thread has been instantiated and started and used to be runnable. It is not

currently executing but has been put on hold (also called "wait" state)

• dead a thread has expired and can not be started again

Java by Definition Chapter 5: Exceptions and Threads Page 23 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

Threads can have priorities from Thread.MIN_PRIORITY (=1) to Thread.MAX_PRIORITY (=10),

with normal priority being equal to Thread.NORM_PRIORITY (= 5). Runnable threads with higher

priority will be scheduled to execute before runnable threads of lower priority.
12

As usual in Java, everything is based on classes and threads are no exception. Therefore, we should

first investigate the Thread class (see the Java API for java.lang.Thread) before we can produce

any examples:

The Thread Class

The Thread class is used to instantiate new threads. Using its methods, one can manipulate the

priority of a thread and move it in and out of its various states:

• a thread is moved into the new state by instantiating it via the new operator

• a thread is moved into the runnable state by calling on its start method. A runnable thread

is scheduled to execute the code inside its run method

• a thread is moved into the blocked state by calling its sleep or wait method (inherited from

Object), or because the thread performs a "blocking" operation
13

• a thread is moved into the dead state if its run method is done, an exception has occurred, or

the System.exit method has been executed
14

For details on the methods of the Thread class, please see table 5.13.

In other words, to create and execute a thread, one needs to perform four steps:

• create a class that extends Thread (so that we can override the run method)

• implement the run method with the code that the thread is supposed to execute

• instantiate an object of that new class (which will be a thread) via the new keyword

• start the thread by calling its start method

The thread will automatically finish when its run method is done.

Example 5.08: Extending the Thread class

Create a class that extends Thread and counts from 1 to 8. Then instantiate three objects of that class
in another test class, start the threads, and describe what happens.

To create our first class we need to extend Thread and put the counting code into the run method

that we override:

public class CountingThread extends Thread
{ public void run()

12 In Java 1.0 threads with the same priority behaved differently on different platforms. Under Windows, they
executed simultaneously (with the operating system giving each thread time slices for execution), while under Sun
Solaris (Unix) the thread started first would need to finish its execution before another thread of the same priority
could start. In newer versions of Java this problem is resolved.
13 In older versions of Java it was legal to call suspend to put a thread into blocked state and resume to wake the
thread up again. The use of these methods is no longer recommended since Java 1.2 and should be avoided.
14 In older versions of Java it was legal to call stop to put a thread into dead state. Calling that method is no longer
recommended and should be avoided.

Java by Definition Chapter 5: Exceptions and Threads Page 24 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

 { System.out.println("Thread started: " + this);
 for (int i = 0; i < 9; i++)
 System.out.print("i = " + (i+1) + "\t");
 System.out.println("Thread stopped: " + this);
 }
}

Then we create another class to instantiate and start three objects of type CountingThread in its

main method, as described in definition 5.12.

public class ThreadTest
{ public static void main(String args[])
 { System.out.println("Starting ThreadTest");
 CountingThread thread1 = new CountingThread();
 thread1.start();
 CountingThread thread2 = new CountingThread();
 thread2.start();
 CountingThread thread3 = new CountingThread();
 thread3.start();
 System.out.println("ThreadTest is done.");
 }
}

When we compile the classes and execute ThreadTest, it produces some happy chaos that looks

similar to the following:15

Figure 5.12: Output of ThreadTest

This example illustrates that the three threads are indeed running completely independently from

each other. In fact, there really are not three threads, but (at least) four16: the three that we created

by our class and one thread running our main method to start everything. In particular, here is what

happened during our particular execution of ThreadTest:

• the main method starts, instantiates the threads, then exits right away. before any of our

three threads had a chance to start executing

15 Each time this program is executed the output can be slightly different because we have no control over when

exactly each thread starts executing. Verify that by executing the ThreadTest program multiple times.
16 Using a utility program such as "System Monitor" under Windows you can verify that the operating system uses 5

threads to execute ThreadTest. The fifth thread is most likely the automatic garbage collector (see section 3.1).

Java by Definition Chapter 5: Exceptions and Threads Page 25 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

• the first thread starts, counts to eight, then stops

• the third thread starts before the second, but only manages to count to 1

• the second thread starts, gets to count to 8 and finishes

• finally the third thread resumes execution, finishes its counting, and exits

�

This example illustrates several facts:

• it is very easy to create independently running threads of execution, with the JVM taking

care of most of the technical details

• it is impossible to know exactly which thread is running at what time since that will be

determined by the operating system

• threads are running truly independently of each other

• threads are running independently of the thread (or program) that started them

To facilitate control over thread execution, Java provides a variety of methods:

Method Header Description
public Thread() Allocates, but does not start, a new Thread object

with name "Thread-"+n (n integer).
public Thread(Runnable target) Allocates a new Thread object and uses the run

method of target as opposed to its own run method
public static native void yield() Causes the currently executing thread object to

pause and allow other threads to execute.
public static void
 sleep(long millis)
 throws InterruptedException

The currently executing thread ceases execution

for the specified number of milliseconds.

public synchronized void start() This thread begins execution and the JVM calls

the run method of this thread.
public void run() Unless the thread was constructed using a

separate Runnable run object, this method does

nothing. Otherwise, the Runnable object's run

method is called.
public final native boolean
 isAlive()

Tests if this thread is alive, i.e. it has been started

and has not yet died.
Public final void
 setPriority(int new)

Changes the priority of this thread.

public static Thread
 currentThread()

Returns a reference to the currently executing

thread object
public final void notify() Wakes up a single thread that is waiting on this

object's monitor (inherited from Object).
public final void notifyAll() Wakes up all threads that are waiting on this

object's monitor (inherited from Object).
public final void
 wait()
 throws InterruptedException

Causes current thread to wait until another thread

invokes notify or notifyAll for this object

(inherited from Object).

Table 5.13: Description of selected constructors and methods in the Thread.class

Since threads require a certain amount of processor time, they should always be cooperative and

signal the processor when they do not actually need processing. The sleep and yield methods of a

thread serve precisely that purpose:

Java by Definition Chapter 5: Exceptions and Threads Page 26 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

• If you want to have a short break in your computation, you should call – inside the run

method – the thread's sleep method. That will not only pause this thread, but also allow the

operating system to schedule other threads waiting to be processed.

• If your computation in the run loop really does not lend itself to taking a break, at least call

yield in the run loop of the thread. That again will give the operating system a chance to

schedule other waiting threads if necessary.

While a thread automatically stops once its run method finishes, there are occasions when you might

want to stop a thread before that method is done. That is easily accomplished using a boolean

variable and the following rule of thumb17:

Software Engineering Tip: Once a thread is in the runnable state, it will continue to execute

until its run method is done. To provide an easy mechanism for stopping a thread at any time,

use the following steps:

• extend the Thread class

• add a boolean variable running to the class and initialize it to false

• override the start method to first set running to true, then call super.start()

• provide a public method halt that sets running to false

• use a while loop in the run method similar to the following:

 public void run()
 { while (running)
 { /* your code here */ }
 }

If the halt method of such a thread class is called it will set running to false and therefore cause the

run method to stop executing, finishing the thread.

Example 5.09: A program using multiple threads

In this example the goal is to create a program that simulates a "table" with twenty or so moving

"marbles" on it. Each "marble" is a class that extends Thread and is responsible for its own

movement. The "table" should extend Frame and contain buttons to start and stop the marbles. The
marbles should be bouncing on the sides of the table so that they do not leave it and be initially placed
at random locations on the table.

Let's start with the "Marble" class: the basic idea is not so difficult:

• The class will extend Thread so that it can independently execute in its own thread.

• We will follow the above rule of thumb to allow the marbles to be stopped at any time.

• The fields for the class are x and y for the current coordinates of the marble.

• To move a marble to a new (x,y) location, we recompute its coordinates in the run method,

which will have the effect of independently moving it.

• Since there should be several moving marbles, we will call on the sleep method inside the

run method to give the operating system time to move other marbles.

17 The Thread class does provide a stop method to immediately interrupt a thread, but that method is not safe and

may leave other objects in an inconsistent state. Since Java 1.2 the stop method should no longer be used and has
been deprecated.

Java by Definition Chapter 5: Exceptions and Threads Page 27 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

• To make sure the marble "bounces" off the edges of the table, we need to know the size of the

table. Therefore, we pass a reference to the table into this class via the constructor so that a

marble can query the table for its size.

Here is the code so far:

import java.awt.*;

public class Marble extends Thread
{ private int xdir = 2*(1-2*(int)Math.round(Math.random()));
 private int ydir = 2*(1-2*(int)Math.round(Math.random()));
 private boolean running = false;
 private Table table = null;
 protected int x, y;
 public Marble(Table _table, int _x, int _y)
 { table = _table;
 x = _x;
 y = _y;
 start();
 }
 public void start()
 { running = true;
 super.start();
 }
 public void halt()
 { running = false; }
 public void run()
 { while (running)
 { move();
 try
 { sleep(50); }
 catch(InterruptedException ie)
 { System.err.println("Thread interrupted"); }
 }
 }
 private void move()
 { x += xdir;
 y += ydir;
 if ((x > table.getSize().width) || (x < 0))
 xdir *= (-1);
 if ((y > table.getSize().height) || (y < 0))
 ydir *= (-1);
 }
}

As described in the above Software Engineering Tip the run method contains a loop that can be

controlled by changing the value of running to false via the halt method. In the constructor of the

class we pass the initial values of the (x,y) location for the marble into the object.

Also, the "bouncing" is handled in a straightforward manner: add a certain value to the current x

and y coordinate of the marble. Then check if it is now outside the drawing area of the table. If so,

make the marble "reverse direction" by switching the sign of the value that is added to the x or y

coordinates, respectively. Note that the move method is marked private so that only the thread itself

can call it, but the x and y fields are marked as protected so that they can be referred to by Table

(see below).18

18 To be picky, marking x and y as protected leaves them open for changes from outside the class even though the

move method is marked private. While this approach saves space, a better idea would be to mark x and y as

private and add methods getX and getY to obtain their values.

Java by Definition Chapter 5: Exceptions and Threads Page 28 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

As a little trick, the initial values of xdir and ydir are choosen at random so that they are either 2

or –2, because:

• Math.random() returns a random double between 0.0 and 1.0

• Math.round(Math.random()) returns either 0.0 or 1.0

• 2*(int)Math.round(Math.random()) returns either 0 or 2

• 1 - 2*(int)Math.round(Math.random()) returns either –1 or 1

• 2*(1 - 2*(int)Math.round(Math.random())) returns either –2 or 2

This, of course, does not settle the question of how to actually draw the marble. Before we go into

that, let's take a look at our Table class:

• We clearly need three fields for the buttons Quit, Start, and Stop. In addition, we will use

an array to store references to 20 marbles (or some number like that)

• In the constructor, we layout everything, resize the frame for 300 by 300 pixels, and make it

visible. We also initialize the marbles at random locations.

• In the actionPerformed method we use for loops to call the methods start and halt of the

marble array when the corresponding buttons are pressed.

• There is, of course, the standard main method to get everything started.

import java.awt.*;
import java.awt.event.*;

public class Table extends Frame implements ActionListener
{ private Button quit = new Button("Quit");
 private Button start = new Button("Start");
 private Button stop = new Button("Stop");
 private Marble marbles[] = new Marble[20];

 public Table()
 { super("Table with Marbles");
 setLayout(new FlowLayout());
 add(quit); quit.addActionListener(this);
 add(start); start.addActionListener(this);
 add(stop); stop.addActionListener(this);
 validate(); setSize(300,300);
 setVisible(true);
 for (int i = 0; i < marbles.length; i++)
 { int x = (int)(getSize().width*Math.random());
 int y = (int)(getSize().height*Math.random());
 marbles[i] = new Marble(this, x, y);
 }
 }
 public void actionPerformed(ActionEvent ae)
 { if (ae.getSource() == stop)
 for (int i = 0; i < marbles.length; i++)
 marbles[i].halt();
 if (ae.getSource() == start)
 for (int i = 0; i < marbles.length; i++)
 { marbles[i].halt();
 marbles[i] = new Marble(this, marbles[i].x, marbles[i].y);
 }
 if (ae.getSource() == quit)
 System.exit(0);
 }
 public void paint(Graphics g)
 { /* still to do */ }
 public static void main(String args[])

Java by Definition Chapter 5: Exceptions and Threads Page 29 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

 { Table table = new Table(); }
}

If the start button is called, we first make sure all current threads are done by calling their halt

methods before initializing a new set of marbles. In particular, when we initialize a new set of

marbles we use coordinates of the current location for each marble. That will cause the movement of

each marble to resume where it stopped, even though they are completely new objects. That’s the

reason for marking the x and y fields of a Marble as protected.19

We still need to solve the problem of how the marbles are going to actually appear on the screen. Of

course, each marble should draw itself but it does not have a Graphics object with which to do the

drawing. Our solution will be to pass a Graphics object from the Table's paint method to an

appropriate method for each of the marbles in our array. Hence the Table's paint method will be:

public void paint(Graphics g)
{ for (int i = 0; i < marbles.length; i++)
 if (marbles[i] != null)
 marbles[i].draw(g);
}

The corresponding draw method in the Marble class is also simple; it just draws a filled oval of some

specific size at the current (x,y) coordinates. We therefore add the following method to the Marble

class:

public void draw(Graphics g)
{ g.setColor(Color.black);
 g.fillOval(x,y,20,20);
}

But this will still not work ! The marbles are running independently, and each of their run methods

(when started) will continuously change to coordinates at which the marble should be drawn.

However, the actual method to do the drawing is the paint method in the Table class, and that is –

currently – only called when the frame needs updating. So to make sure that the table is redrawn

any time a marble changes its coordinates we place a call to the Table's repaint method in the run

method of the Marble. Here's the new, modified method, with one additional line in bold and italics:

public void run()
{ while (true)
 { move();
 try
 { sleep(40); }
 catch(InterruptedException ie)
 { System.err.println("Thread interrupted"); }
 table.repaint();

 }
}

While we can not see this movement on paper, here is nevertheless a screen shot of the frame:

19 There is actually a slight "mistake" in our class. In order for the marbles to continue their movement after clicking
on start, we need to copy the complete state of the old marble into a new one. We do that with the (x,y) coordinates

but fail to do it with the current values of xdir and ydir. Hence, every time start is clicked the marbles will get a
new random direction for their movement.

Java by Definition Chapter 5: Exceptions and Threads Page 30 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

Frame 5.14: Tables with Marbles, each executing in its own thread

It is worth reflecting for just a second what is going on:

• When the Start button is pressed, each Marble starts executing its run method.

• The run method in each marble computes new coordinates, sleeps for 40 milliseconds, then

calls the repaint method of the table.

• That, in turn, results in updating the image and creates the illusion of continuous movement.

�

Now we have some idea about using threads. We have so far extended the Thread class to produce a

thread, but that's not always necessary. In fact, most programs need a thread only to override its run

method and very little else. One solution would be, of course, to have the program extend, say, Frame

and Thread but as we know Java does not support multiple inheritance. Instead, Java provides an

Interface called Runnable to enable any class to use additional threads without having to extend

the Thread class.

Threads via the Runnable Interface

The Runnable interface in Java is an alternate method to using threads in a program. In many

situations, a class already extends a class like Frame or Applet, so it can not extend Thread also. One

could of course create another class that subclasses Thread and use that class to do some of the work.

However, in many situations a much simpler approach is possible using the Runnable interface.

The Runnable Interface

The Runnable interface provides a means for classes to execute, or be controlled by, a thread

without extending the Thread class. The standard use of this interface involves a class

implementing the public void run method and using a field of type Thread. When instantiating

Java by Definition Chapter 5: Exceptions and Threads Page 31 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

that thread, a reference to itself is used as input parameter which will link the run method of the

class to the thread so that it can be controlled via the thread's start, sleep, and yield methods.

 [modifier] class ClassName [extends SuperClassName]
 implements Runnable [, OtherInterfaceList]
 { /* fields, constructors and methods
 public void run()
 { /* code for the run method */
 }
 }

Using this interface, a class can extend other classes and in addition use one (or more) threads. Even

if a class could extend Thread, it may want to use the Runnable interface if all that would be

necessary is to implement the run method of the thread.

Example 5.10: Displaying the time using Runnable

Create a program that prints out the current time every second (like clockwork).

Our first problem, of course, is to get the current time (and date) from the system. Searching through

the Java classes, we find a class in the java.util package called Date which will serve the bill just

fine: instantiating a new Date object will give us the current time, and the toString method can be

used to get its string representation (see below for a definition of the Date class). The next decision

we have to make is whether we need a thread, and if so, whether we should extend the Thread class

or use the Runnable interface.

First, since something is to occur every second a thread is perfect: we can wake up a thread once per

second, and have it print out the time at that instance. Moreover, that is pretty much all we need to

do, and a call to the System.out.println method will fit nicely into the run method. Therefore, since

our use of a thread is simple, we choose to use the Runnable interface:

import java.util.Date;

public class ShowSeconds implements Runnable
{ private Thread clocker = null;
 private Date now = new Date();

 public ShowSeconds()
 { clocker = new Thread(this);
 clocker.start();
 }
 public void run()
 { while (true)
 { now = new Date();
 System.out.println(now);
 try
 { clocker.sleep(1000); }
 catch(InterruptedException ie)
 { System.err.println("Thread error: " + ie); }
 }
 }
 public static void main(String args[])
 { ShowSeconds time = new ShowSeconds(); }
}

Java by Definition Chapter 5: Exceptions and Threads Page 32 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

The thread clocker is initialized in the constructor with the current instance of the ShowSeconds

class as input parameter (which works since the class implements Runnable). That links the run

method of the clocker thread to the run method of our class ShowSeconds. Therefore, when the

thread is started, the run method of our class begins executing. Just as before this method contains

an infinite loop. However, this time we forgot to provide any mechanism to allow us to stop the

thread, so this time the run look truly is infinite – this is not at all good programing.

We have to actually instantiate a new ShowSeconds instance as opposed to using only the static main

method. If we want to associate a thread with the run method of our class, we need to pass a

reference this to the class itself into the thread's constructor. That only works if there is an instance

of this class, as opposed to a class using only static methods.

�

As mentioned, the above class will run forever (or to be more precise, it will not stop by itself and

needs outside intervention before quitting). That, of course, is not what we should do. In addition, we

might want to create a fully functioning Clock class that can be reused in other applications at any

time instead of create a simple, standalone program for demonstration purposes only. Before

creating that class, let us take a look at the Date class that Java provides:

The Date Class

The Date class is used to represent an instance in time, including the date. The actual

representation of the Date is Universal Time (UT)
20

, but..

 public class Date extends Object
 public Date()
 /* Creates a Date and initializes it to the current time */
 public long getTime()
 /* number of milliseconds since January 1, 1970, 00:00:00 */
 public void setTime(long time)
 /* represent the number of milliseconds since January 1, 1970 */
 public boolean before(Date when)
 public boolean after(Date when)
 public boolean equals(Object obj)
 public String toString()

Java also provides the Calendar and DateFormat class to properly format time based on a

country's time convention.

Now let's create a reusable, self-running clock that can be properly started and stopped any time. We

have already seen how to start and stop a class extending Thread but when we use the Runnable

interface a different technique is more appropriate.

Software Engineering Tip: When using Threads you have to be sure that all threads that

have been instantiated and started are truly stopped when they are not needed. Otherwise, they

may consume system resources without any tangible benefit. Classes that implement the

Runnable interface may want to use the following framework:

 public class ClassName extends SuperClass implements Runnable
 { private Thread threadName = null;
 // class-specific fields and methods, could include

20 The details are actually not easy because of the intricacies of time measurement For further details on “time”, see

http://tycho.usno.navy.mil, as well as the Java API for the Calendar and DateFormat classes.

Java by Definition Chapter 5: Exceptions and Threads Page 33 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

 // a call to “start” to actually start the thread
 public void start()
 { if (threadName == null)
 { threadName = new Thread(this);
 threadName.start();
 }
 }
 public void stop()21
 { threadName = null; }
 public void run()
 { Thread currentThread = Thread.currentThread();
 while (threadName == currentThread)
 { /* class-specific code calling threadName.sleep(sleepTime)
 or threadName.yield() */}
 }

Naming two of the above methods start and stop does not mean that they are called

automatically; they only provide convenient means to properly start and stop the thread.

The start method checks if the thread is currently null. If so, it indicates that the thread is not

running so we instantiate a new thread and tie it to the run method of our class. Then we call the

thread's start method, which in turn begins the run loop. Before the while loop of the run method

starts, we use the static currentThread method of the Thread class to obtain a reference to the

currently executing thread. That reference should be identical to the thread field initialized in the

start method. The while loop will then execute as long as both references agree. In the stop method

we change the thread field to point to null. That will stop the run method the next time the

condition in the while loop is check, and also marks the thread for automatic garbage collection.22

Example 5.11: A reusable Clock class

Create a Clock class that will emulate a digital clock. It should have the possibility of being started

and stopped at any time, but otherwise run completely independent of anything else.

The first thing we need to determine is which class we should extend. One option would be to extend

Canvas and display the date string in the paint method. However, there is a simpler option: our time

(converted to a string) is non-editable text, so why not display it in a Label? In fact, why not have

our Clock class extend Label? Now that the difficult question is solved, the rest is easy: we follow the

above rule of thumb and add a field clocker of type Thread to our class as well as the methods

start, stop, and run, as outlined in the above Software Engineering Tip. In the while loop of the run

method we set the text of the label to the new system time every second by putting the thread to

sleep for 1000 milliseconds. The constructor initializes the label with the current time. Here is the

code:

import java.awt.Label;
import java.util.Date;

public class Clock extends Label implements Runnable
{ private Thread clocker = null;

 public Clock()

21 In our earlier Software Engineering Tip for stopping a thread we called the method to stop a thread halt instead

of stop. That was necessary because a class extending Thread inherits a final method stop, which cannot be

overridden. In our current example there is no final stop method so we can choose this name instead of halt.
22 The idea is similar to the one used in our earlier Software Engineering Tip for stopping a thread but there we
needed an additional boolean variable to control the run method. Here we can use the state of the thread field itself.

Java by Definition Chapter 5: Exceptions and Threads Page 34 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

 { setText(new Date().toString()); }
 public void start()
 { if (clocker == null)
 { clocker = new Thread(this);
 clocker.start();
 }
 }
 public void stop()
 { clocker = null; }
 public void run()
 { Thread currentThread = Thread.currentThread();
 while (clocker == currentThread)
 { setText(new Date().toString());
 try
 { clocker.sleep(1000);
 }
 catch (InterruptedException ie)
 { setText("Clock broken"); }
 }
 }
}

Again, we seem to have created an infinite loop in our run method, but we can use the stop method to

interrupt the loop. Therefore, the loop is not really infinite and our class should work perfectly fine.

�

This class can now be used in any program or applet, and it will tell the time independently of

anything else that is going on in that class.

Example 5.12: Using the Clock class

Create a simple applet that uses the prior Clock class.

The Clock extends Label, so it can be positioned with a layout manager. We also use two buttons to

start and stop our clock. The code is completely straightforward.

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

public class ClockTest extends Applet implements ActionListener
{ private Button start = new Button("Start");
 private Button stop = new Button("Stop");
 private Clock clock = new Clock();

 public void init()
 { setLayout(new FlowLayout());
 add(start); start.addActionListener(this);
 add(stop); stop.addActionListener(this);
 add(clock);
 }
 public void actionPerformed(ActionEvent ae)
 { if (ae.getSource() == stop)
 clock.stop();
 else if (ae.getSource() == start)
 clock.start();
 }
}

Java by Definition Chapter 5: Exceptions and Threads Page 35 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

This applet will place a clock via the FlowLayout manager, and the clock will start ticking as soon as

the start button is clicked. But now we have a problem due precisely to the fact that threads run

independently of everything else: if a user looks at a web page containing this applet, the clock will

start running as it is supposed to. But when a user leaves the page, the clock will continue to run.

That is, of course, unnecessary and in fact wastes system resources: why should the clock continue to

run even if nobody is looking at it?

Therefore, we need to implement the start and stop methods of an Applet that are called

automatically (see The Applet Class in section 4.3) when a user leaves and revisits the web page

containing the applet, so we implement these methods as follows:

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

public class ClockTest extends Applet implements ActionListener
{ private Button start = new Button("Start");
 private Button stop = new Button("Stop");
 private Clock clock = new Clock();

 public void init()
 { setLayout(new FlowLayout());
 add(start); start.addActionListener(this);
 add(stop); stop.addActionListener(this);
 add(clock);
 }
 public void start()
 { clock.start(); }
 public void stop()
 { clock.stop(); }
 public void actionPerformed(ActionEvent ae)
 { if (ae.getSource() == stop)
 clock.stop();
 else if (ae.getSource() == start)
 clock.start();
 }
}

Now the clock will start as soon as the applet has finished loading (because the start method is

called automatically), and it will stop when the user leaves the page containing the applet (because

the stop method is automatically called).

Figure 5.15: The Clock class embedded in an applet

�

Here is another popular example of using a thread via the Runnable interface.

Java by Definition Chapter 5: Exceptions and Threads Page 36 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

Example 5.13: A reusable Ticker class

Create a reusable "Ticker Tape" class, i.e. a class that displays some text that moves slowly across its
display area from right to left. Then create an applet that tests this class together with the previous

Clock class.

As usual, we first need to decide which class we want to extend. This time, we will extend a Canvas

and implement the Runnable interface, since the paint method of a Canvas allows us complete

control over the placement of the string.

The general idea is simple: set an integer field xPos to the width of the screen and another one yPos

to the height of the string. Then draw the string at position (xPos, yPos). In the run method, decrease

xPos and redraw the string: it will appear to move to the left. Continue to decrease xPos until the

last character of the string has "left" the display area, at which time you want to reset xPos to the

width of the display area. In other words, our basic class will look as follows (using the above

framework):

import java.awt.*;

public class Ticker extends Canvas implements Runnable
{ private int xPos, yPos;
 private Thread runner = null;
 private String text = null;

 public Ticker(String _text)
 { text = _text;
 start();
 }
 public void start()
 { if (runner == null)
 { runner = new Thread(this);
 runner.start();
 }
 }
 public void stop()
 { runner = null; }
 public void run()
 { Thread currentThread = Thread.currentThread();
 while (runner == currentThread)
 { computeCoordinates();
 repaint();
 try
 { runner.sleep(50); }
 catch (InterruptedException ie)
 { System.err.println("Error: " + ie);
 }
 }
 }
 public void paint(Graphics g)
 { g.drawString(text, xPos, yPos); }
 private void computeCoordinates()
 { /* to be implemented */ }
}

That, of course, leaves out the method computeCoordinates to reset the coordinates: we want to

reset the decrement xPos until the end of the string is about to leave the drawing area. Since at that

time the xPos would be equal to the width of the text, it means that we need to be able to determine

the width of a String. But that width (and the height as well) depends on the particular font

selected, its point size, and its appearance (bold, italic, normal). Therefore, before we can continue,

Java by Definition Chapter 5: Exceptions and Threads Page 37 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

we must search the Java API for classes appropriate to give us this information. In section 4.7 we

have already introduced the Font class, but we also need a class to measure the sizes of characters in

a particular font.

The FontMetrics Class

The FontMetrics class is used to retrieve information about a particular font, and to measure

the dimensions of a String in a particular Font.

 public abstract class FontMetrics extends Object
 { // Constructor
 protected FontMetrics(Font font)
 // Selected Methods
 public int getLeading()
 public int getAscent()
 public int getDescent()
 public int getHeight() // = leading + ascent + descent
 public int charWidth(char ch)
 public int stringWidth(String str)
 }

The FontMetrics class is an abstract class, and can therefore not be instantiated. Instead, every

Component offers a method getFontMetrics that will return an appropriate reference to a

FontMetrics object.

In order to measure a String in a particular font, we need to make sure that the string is really

drawn in that font, then use an instance of a FontMetrics class to measure its height and width. In

our class, we will accomplish this by adding fields for the current height, width, and font, and setting

their values via the FontMetrics class. Here is the modified class, with the changed code in bold and

italics:

public class Ticker extends Canvas implements Runnable
{ private int xPos, yPos;
 private int height, width;
 private Thread runner = null;
 private String text = null;
 private FontMetrics metrics = null;
 private Font font = new Font("Monospaced", Font.BOLD, 12);

 public Ticker(String _text)
 { text = _text;
 metrics = getFontMetrics(font);
 width = metrics.stringWidth(text);
 height = metrics.getHeight();
 xPos = getSize().width;
 yPos = height;
 start();
 }
 public void start() { /* no change */ }
 public void stop() { /* no change */ }
 public void run() { /* no change */ }
 public void paint(Graphics g)
 { g.setFont(font);
 g.drawString(text, xPos, yPos);
 }
 private void computeCoordinates()
 { /* to be implemented */ }
}

Java by Definition Chapter 5: Exceptions and Threads Page 38 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

Now that we know the dimensions, in pixels, of the string, we can also implement the

computeCoordinates method that is being referred to in the run method:

private void computeCoordinates()
{ if (xPos < -width)
 xPos = getSize().width;
 else
 xPos -= 2;
}

At this point it seems our class is complete. However, we would like to position a Ticker object using

a layout manager. When a layout manager wants to add an object, it queries that object as to which

size it would like to have. Then it tries to accommodate the object, based on that information, as best

as possible under the constraints of that manager. The method that is queried is the

getPreferredSize method, which is part of every component. Since our canvas, however, does not

override this method, a layout manager will not properly size our Ticker class unless we implement

getPreferredSize (see Software Engineering Tip in section 4.7). Therefore, we add one more method

to our class before testing it:

public Dimension getPreferredSize()
{ return new Dimension(width, height+3); }

which will inform a layout manager that our Ticker wants to be at least as big as the dimensions of

the text it is displaying.23

Now we have a reusable "ticker tape" class that we can add to any class we create. Here is a simple

example:

import java.applet.*;
import java.awt.*;

public class TickerTest extends Applet
{ private Ticker ticker = new Ticker("Testing the ticker tape class");
 private Clock clock = new Clock();
 private TextArea display = new TextArea();

 public void init()
 { setLayout(new BorderLayout());
 add("North", ticker);
 add("Center", display);
 add("South", clock);
 display.append("This is a test of the\n");
 display.append("ticker tape and clock\n");
 display.append("class.");
 }
 public void start()
 { ticker.start();
 clock.start();
 }
 public void stop()
 { ticker.stop();
 clock.stop();
 }
}

23 It is not necessary to add the getPreferredSize to the Clock class in example 5.11. That class extends Label, not

Canvas, and a labels preferred size is automatically as big as the text it contains initially.

Java by Definition Chapter 5: Exceptions and Threads Page 39 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

This will place the ticker tape at the top of

the applet, the clock at the bottom, and some

display area in the middle. The clock and the

ticker tape will run independently of

everything else, using their own threads.

Note that our applet implements the start

and stop methods to properly stop (and

restart) the threads when a user leaves and

reenters the web pages containing this

applet. As we mentioned, threads should

usually be stopped when a user is not

viewing an applet to conserve system

resources.

Figure 5.16: Testing the Ticker and Clock class

�

As a final example of threads, here is a class and a test program to figure out:

Example 5.14: A reusable TimedCounter class to generate an ActionEvent

Take a look at the class and test program below and explain what is going to happen when the test
program is started.

import java.awt.*;
import java.awt.event.*;

public class TimedCounter implements Runnable
{ private ActionListener listener = null;
 private Object object = null;
 private Thread thread = null;
 private int timer = 0;
 private int time = 5;

 public TimedCounter(ActionListener _listener, Object _obj, int _time)
 { time = _time ;
 object = _obj;
 listener = AWTEventMulticaster.add(listener, _listener);
 }
 public void start()
 { if (thread == null)
 { thread = new Thread(this);
 thread.start();
 }
 }
 public void stop()
 { thread = null; }
 public void run()
 { Thread currentThread = Thread.currentThread();
 while ((currentThread == thread) && (timer < time * 1000))
 { timer += 100;
 try
 { thread.sleep(100); }
 catch(Exception e)
 { System.err.println("Unknown error " + e); }
 if (timer >= time * 1000)
 { ActionEvent e = new ActionEvent(object,
 ActionEvent.ACTION_PERFORMED,

Java by Definition Chapter 5: Exceptions and Threads Page 40 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

 "time up");
 listener.actionPerformed(e);
 }
 }
 }
}

import java.awt.*;
import java.awt.event.*;

public class TestProgram extends Frame implements ActionListener
{ private Button quit = new Button("Quit");
 private TimedCounter counter = null;

 public TestProgram()
 { quit.addActionListener(this);
 counter = new TimedCounter(this, quit, 5);
 setLayout(new FlowLayout());
 add(quit);
 validate(); pack(); setVisible(true);
 counter.start();
 }
 public void actionPerformed(ActionEvent e)
 { if (e.getSource() == quit)
 { counter.stop();
 System.exit(0);
 }
 }
 public static void main(String args[])
 { TestProgram tp = new TestProgram(); }
}

Clearly the TestProgram, when started, will instantiate and display a frame with a single button

labeled "Quit". If you click on that button the frame closes and the program quits. The purpose of the

first class is to attach a timer to an active component so that an action event with the proper

signature is generated automatically after a specified time has expired. The test program starts the

thread in its constructor, which will cause the run method of TimedCounter to execute. That method

starts counting every 100 milliseconds, until either the value of timer is at least as large as time or

the stop method has interrupted the thread. After a given number of seconds (in this case 5), the

class generates an action event which has as its id the identity of that object used in the constructor

of the class. In this case it means that after 5 seconds the TimedCounter class will generate an event

that simulates a click on the quit button. In other words, if the frame appears you have 5 seconds

before the frame will shut down automatically because the TimedCounter will simulate the

appropriate action event. If you click the button before the 5 seconds are up, the thread will be

stopped because the actionPerformed method in the TestProgram class calls counter.stop().

This TimedCounter class can be attached to any object that generates action events to put a counter

on that object that will automatically fire the corresponding action event as if a user has generated

the event. With this class you can, for example, create programs that offer users certain choices and

if the user does not react after a fixed amount of time the corresponding choices are activated

automatically. Since each counter uses its own thread, many such counters can be attached to action

objects and they will all count down independently of each other.

�

Java by Definition Chapter 5: Exceptions and Threads Page 41 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

We will conclude our introduction to threads by briefly discussion synchronization problems (and

solutions) when using multiple threads.24

5.3. Synchronized Threads and Methods

When you create a class using threads, all threads created have complete access to the fields and

methods of the class or to public fields and methods of any class for which the thread has a reference.

For classes using a single thread, that does not usually pose a problem, but for classes that use

multiple threads this can result in serious problems.

Data Corruption using Multiple Threads

For example, two threads may have access to the same integer field. One thread reads the value of

the field and performs some action based on that value. While the first thread is performing its

action, the second thread changes the value of the integer. Now the action of the first thread is no

longer in sync with the value of the integer, but the first thread does not know about that change.

Example 5.15 Data corruption using slow and fast threads

Create a class that contains an integer field number with a positive random value and a method

performWork to perform two types of work: a "slow" task and a "quick" task The type of work to
perform should depend on the input parameter to the method. Instead of performing the work itself by
calling the method directly, however, the class should instantiate two threads, a "fast" and a "slow"

one, which in turn call performWork as follows:

• The "Slow Worker" should call performWork and cause it to display the random number, put

the thread to sleep for 2 seconds to simulate a long-lasting task, then display the number
again.

• The "Fast Worker" should cause performWork to modify the number to negative 1, without

any delays, simulating the quick task.

The first class is straight forward, according to the instructions. When instantiating the two threads,

we need to make sure to pass a reference to the current instance of the class to the threads so that

both threads have access to the performWork method. We also pass a parameter along to indicate

which type of work each thread is supposed to perform. Finally, we add a main method so that this

class is executable:

public class CorruptedData
{ protected static int DISPLAY = 1, CHANGE = 2;
 private WorkThread slowWorker = null;
 private WorkThread fastWorker = null;
 private int number = 0;

 public CorruptedData()
 { number = (int)(10*Math.random());
 slowWorker = new WorkThread(this, DISPLAY);

24 This is particularly relevant for chapter 6 where we introduce Swing components. Swing components are not
"thread-safe" and should be synchronized when used in programs with threads.

Java by Definition Chapter 5: Exceptions and Threads Page 42 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

 fastWorker = new WorkThread(this, CHANGE);
 }
 public void performWork(int type)
 { if (type == DISPLAY)
 { System.out.println("Number before sleeping: " + number);
 try
 { slowWorker.sleep(2000);
 }
 catch(InterruptedException ie)
 { System.err.println("Error: " + ie); }
 System.out.println("Number after waking up: " + number);
 }
 if (type == CHANGE)
 number = -1;
 }
 public static void main(String args[])
 { CorruptedData cd = new CorruptedData(); }
}

Note that we can instantiate the threads only in the constructor, not in the main method or field

definitions because they contain a reference to this which is not available in the static main

method.

The thread class is again easy to implement: it simply defines fields for a reference to the main class

and to the type of work to perform, starts the thread, and in the run method calls the performWork

method of the main class, using the appropriate parameter.

public class WorkThread extends Thread
{ private CorruptedData data = null;
 private int work = 0;

 public WorkThread(CorruptedData _data, int _work)
 { data = _data;
 work = _work;
 start();
 }
 public void run()
 { data.performWork(work);
 }
}

When we compile and run the CorruptedData class, we will see the output similar to the following:

Figure 5.17: Data Corruption by multiple Threads

The program starts and instantiates two threads, both of which start running. The "slow thread"

prints out the value of number, then sleeps for two seconds. When it wakes up it prints out the value

again: it has – seemingly inexplicably – changed to negative one, even though there is no change of

that sort occuring in the currently executing branch of the if statement. Of course, what has

happened was that while the slow thread was sleeping (or perfoming another long and perhaps more

useful task depending on the value of number), the second "stealth" method has changed the value of

Java by Definition Chapter 5: Exceptions and Threads Page 43 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

number. The first thread, however, still operates under the assumption that number has its original

value, which could lead to all kinds of undesired results.

 �

This example might seem somewhat contrived but it is not hard to create a more realistic example

that will illustrate what can happen if multiple threads have concurrent access to data:

Example 5.16 Data corruption in a bank account simluation

Create a class Bank that contains an array of 8 integers, simulating savings accounts, each initially

containing $100,000. The Bank class should contain a method transfer that can transfer money from
one savings account to another, provided the first one has enough funds. That method should "waste
some time" between taking money out of one account and putting it into another account. In addition,

there should be a method showAccounts that displays a summary of all accounts. The Bank class
should also instantiate 8 threads simulating customers that own the accounts, one customer per
account. These customer threads then continue to transfer random amounts of money (up to $1,000 per

transaction) from their own account into another account choosen at random, using the Bank's

transfer method to conduct the transfer (if there are sufficient funds). Run this program in a frame,
using buttons to display the account summary and to restart the computations. Explain.

The basic idea of the Bank class is fairly clear: it contains a field for the integer array representing

the accounts and another field for an array of Customer threads. We will also add a field to count the

number of transactions performed. In the constructor we will initialize the accounts and customer

threads. The transfer method needs to have three input parameters: the account from which to take

the money, the account into which to deposit the money, and the amount of money to transfer. Before

conducting the transfer we should check if there are sufficient funds in the withdrawal account. To

waste time between computations, we will call on the static sleep method of the Thread class. Here

is the basic layout of the important methods of our class, not counting any GUI coding:

import java.awt.*;
import java.awt.event.*;

public class Bank
{ protected final static int NUM_ACCOUNTS = 8;
 private final static int WASTE_TIME = 1;
 private int accounts[] = new int[NUM_ACCOUNTS];
 private Customer customer[] = new Customer[NUM_ACCOUNTS];
 private int counter = 0;
 public Bank()
 { for (int i = 0; i < accounts.length; i++)
 accounts[i] = 100000;
 start();
 }
 public void transfer(int from, int into, int amount)
 { if ((accounts[from] >= amount) && (from != into))
 { int newAmountFrom = accounts[from] - amount;
 int newAmountTo = accounts[into] + amount;
 wasteSomeTime();
 accounts[from] = newAmountFrom;
 accounts[into] = newAmountTo;
 }
 }
 private void start()
 { stop();
 for (int i = 0; i < accounts.length; i++)
 customer[i] = new Customer(i, this);
 }
 private void stop()

Java by Definition Chapter 5: Exceptions and Threads Page 44 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

 { for (int i = 0; i < accounts.length; i++)
 if (customer[i] != null)
 customer[i].halt();
 }
 private void wasteSomeTime()
 { try
 { Thread.sleep(WASTE_TIME); }
 catch(InterruptedException ie)
 { System.err.println("Error: " + ie); }
 }
 private void showAccounts()
 { /* shows account information for all accounts */ }
 public static void main(String args[])
 { Bank bank = new Bank(); }
}

The important method is transfer: it first checks whether the from account contains enough funds

and the from account is different from the into account. Then it computes the new amounts in each

account after transferring the money, but proceeds to waste some time before actually adjusting the

accounts.

Before we add the GUI code to the Bank class, let's introduce the Customer class. That class extends

Thread and follows our Software Engineering Tip for starting and stopping a thread. In addition to

the boolean field running described in that definition, we need two additional fields for references to

the Bank object and for the id of the account corresponding to this customer. We then start the

thread, which in its run method determines random values for the amount to transfer and the

account into which to deposit the money.

public class Customer extends Thread
{ private Bank bank = null;
 private int id = -1;
 private boolean running = false;
 public Customer(int _id, Bank _bank)
 { bank = _bank;
 id = _id;
 start();
 }
 public void start()
 { running = true;
 super.start();
 }
 public void halt()
 { running = false; }
 public void run()
 { while (running)
 { int into = (int)(Bank.NUM_ACCOUNTS * Math.random());
 int amount = (int)(1000 * Math.random());
 bank.transfer(id, into, amount);
 yield();
 }
 }
}

Java by Definition Chapter 5: Exceptions and Threads Page 45 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

Note in particular that our thread is a good citizen and calls on yield in its run method to allow

other threads to do their work.25 Finally, we add some simple buttons and other GUI elements to the

Bank class as follows:

• First, we change the definition of the class so that it extends Frame and implements

ActionListener:

public class Bank extends Frame implements ActionListener

• Next, we add buttons, a status label, and a display area as fields to the class:

private Label status = new Label("Transfers Completed: 0");
private TextArea display = new TextArea();
private Button show = new Button("Show Accounts");
private Button start = new Button("Restart");
private Button stop = new Button("Stop");

• Then we modify the constructor to layout these components appropriately, using an anonymous

inner class to close the frame if the user clicks on the standard close box:

public Bank()
{ super("Mystery Money");
 Panel buttons = new Panel(); buttons.setLayout(new FlowLayout());
 buttons.add(show); show.addActionListener(this);
 buttons.add(start); start.addActionListener(this);
 buttons.add(stop); stop.addActionListener(this);
 setLayout(new BorderLayout());
 add("North", status); add("South", buttons); add("Center", display);
 for (int i = 0; i < accounts.length; i++)
 accounts[i] = 100000;
 start();
 validate(); setSize(300, 300); setVisible(true);
 addWindowListener(new WindowAdapter()
 { public void windowClosing(WindowEvent we)
 { System.exit(0); }
 });
}

• We now add a line displaying the number of transfers as the last line of the transfer method:

status.setText("Transfers completed: " + counter++);

• We implement the showAccounts method to display its information in the display text area:

private void showAccounts()
{ int sum = 0;
 for (int i = 0; i < accounts.length; i++)
 { sum += accounts[i];
 display.append("\nAccount " + i + ": $" + accounts[i]);
 }
 display.append("\nTotal Amount: $" + sum);
 display.append("\nTotal Transfers: " + counter + "\n");
}

25 At this point we could already compile the two classes and execute Bank. However, so far we do not call on

showAccounts (we didn't even implement that method) so we will not be able to get any information about our
accounts. Therefore, we need to wait until we have added the appropriate GUI elements.

Java by Definition Chapter 5: Exceptions and Threads Page 46 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

• And finally we add an actionPerformed method to react to clicks on our buttons:

public void actionPerformed(ActionEvent ae)
 { if (ae.getSource() == show)
 showAccounts();
 else if (ae.getSource() == start)
 start();
 else if (ae.getSource() == stop)
 stop();
 }

Before executing the Bank class let us reflect on the financial situation of our bank: initially, each of

the eight account contains $100,000 and the customers only shuffle money from their own account

into other accounts. Therefore, the total sum of money available in all accounts should always

remain at a constant value of $800,000, regardless of how many transfers have taken place.

However, when we run this program for a while, then click on the Stop and the Show Accounts

button, we will see output similar to the following:

Figure 5.18: Running Customer threads on shared Bank data

26

After only 2471 transfers the total has inexplicably dropped to $733,152. This, of course, should not

happen – money has mysteriously disappeared. A bank using this program for conducting its

transactions would certainly not stay in business for long. If you click on Restart to let the program

continue for a while, then again click on Stop and Show Accounts, more money would disappear.

This is disturbing and we need to explain why the money in the Bank class seems to evaporate into

thin air.27 Here is what the program is doing, put into a "real world" context:

Customer 1 whose account is currently at, say, $50,000, wants to take out, say, $500 and transfer it

to another account. The customer therefore goes to the bank and inquires about the current balance.

The bank clerk says there are $50,000 in the account, and customer 1 is therefore able to conduct the

transaction. The clerk computes the new account balances for the customer account to $45,500 and

adds the money to the new account. Before the clerk updates the actual accounts, however, he is

26 If you run this program the numbers displayed will be different from the ones displayed here. But the total amount
will almost certainly be different from the expected $800,000.
27 . We will learn in the next section how to ensure that multiple threads are properly synchronized so that they can
not result in this kind of data corruption.

Java by Definition Chapter 5: Exceptions and Threads Page 47 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

called to the phone (simulated by the wasteSomeTime method). When he returns, he resets the

accounts according to the figures he computed just a second ago. But in the short time the clerk was

on the phone, another customer may have transferred, say, $200 into the account of customer 1

which now has a value of $50,200. Nonetheless, the clerk resets the customer's account to $45,500,

and the $200 that briefly were in the account have disappeared.28

�

A situation like this is actually much more common when performing input/output operations on

files, since data transfer to and from file takes much longer than data transfer in main memory. But

even for non-IO programs the problem is real as the above example shows.

Synchronizing Threads

To prevent this error from occurring, Java provides a simple yet powerful synchronization

mechanism.

Synchronized Methods

Any method in a class can be designated as synchronized to prevent data corruption by multiple

threads. When a thread enters a synchronized method, the JVM guarantees that this thread will

be able to finish before any other thread will be given access to the method. If a another thread

tries to access a synchronized method already activated by a thread, the second thread is put on

hold and must wait until the first thread finishes and releases the method. To declare a method as

synchronized, use:

 [modifier] synchronized returnType methodName([parameterList])
 { /* method body */ }

Example 5.17: Synchronizing slow and fast threads to prevent data corruption

In example 5.15 using a "slow" and a "fast" thread, use proper synchronization to prevent data
corruption:

Recall the performWork method in the CorruptedData class:

public void performWork(int type)
{ if (type == DISPLAY)
 { System.out.println("Number before sleeping: " + number);
 try
 { slowWorker.sleep(2000); }
 catch(InterruptedException ie)
 { System.err.println("Error: " + ie); }
 System.out.println("Number after waking up: " + number);
 }
 if (type == CHANGE)

28 The transfer method is somewhat contrived. A more straightforward implementation would simply say

account[from] -= amount and account[into] += amount. If you use those lines it is much less likely that data
corruption occurs but the principle is still the same: in the (very) brief time the right sides are computed, the account
balance on the left side could be changed by another thread, resulting in data loss.

Java by Definition Chapter 5: Exceptions and Threads Page 48 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

 number = -1;
}

This method is activated by two threads: the first thread displays the number, sleeps, then displays

it again. While this thread was sleeping, the second thread was allowed access to the method and

changed the value of number (see example 5.15 for details). To prevent this data corruption, simply

flag this method as synchronized, leaving everything else unchanged:

public synchronized void performWork(int type)
{ /* rest of the method is unchanged */ }

When we now execute this class with the above modification, the output will be similar to:

Figure 5.19: Data Corruption prevented using Synchronized Methods

Nothing else has changed in the code, but since the performWork method is now designated as

synchronized, it will not allow the second thread to execute it until the first thread has finished. Of

course, after both threads execute the number will be -1 but the "slow" thread was guaranteed that

the value of number will not change while it is working (or in this case, sleeping).

�

Using this simple synchronization technique will also allow us to prevent our bank in example 5.16

from going out of business:

Example 5.18 Synchronizing the bank account simulation

In the class Bank create in example 5.16 use proper synchronization to prevent data corruption.

Again, a simple change will insure the integrity of our bank accounts: while one customer thread is

performing a transaction, no other thread should be allowed to change any account. We therefore

change the header of the transfer method from that example to a synchronized method:

public synchronized void transfer(int from, int into, int amount)

Now we can perform any amount of transactions, and any time a thread wants to use this method to

transfer money, it must wait until the currently executing thread has finished its business, therefore

insuring the integrity of the bank's accounting books. To verify, we should execute the new Bank

class including the synchronized transfer method for a large number of transactions. The total

sum should always be constant at $800,000. Here is an excerpt of the output, showing that after

more than 200,000 transactions the total sum is indeed still $800,000:

Java by Definition Chapter 5: Exceptions and Threads Page 49 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

Figure 5.20: Running Customer threads on shared Bank data via synchronized Method

29

�

The mechanism that Java employs to ensure the integrity of synchronized methods involves

monitors:

Monitors

An object that can deny threads access and notify threads when access is again possible is called

a monitor. Any object that contains one or more synchronized methods is a monitor.

We do not have time to explain more details about monitors but we will show an example where

Java's convenient but simple synchronization principle can result in deadlocked or stalled programs.

Wait, 7otify, and Deadlocks

Java's mechanism to prevent simultaneous access to objects by threads is convenient, easy to use,

and works without problems in most situations. However, there can be cases when threads begin to

block each other in such a way that neither of them can continue because each one waits for the

other to make a first move. At the same time, each thread also prevents the other from making the

first move, thus resulting in a deadlocked situation.

Before we give one example of a deadlock situation, we need to investigate some explicit methods

that objects can use to control threads

The Methods wait and notify

Every Java class extends the basic Object class. Therefore, every class inherits from Object the

methods wait and notify. Both methods can only be called in a synchronized method.

29 You can also click on Show Accounts without first stopping all threads. In that case the total amount in the
accounts will likely not be equal to $800,000 because as we sum up the value of the accounts, threads continue to
change individual accounts. Only after all threads are stopped will the total amount be $800,000.

Java by Definition Chapter 5: Exceptions and Threads Page 50 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

• public final void wait() throws InterruptedException: Causes a thread to release

ownership of its monitor and wait until it is notified by another thread of a change in this

object. The waiting thread will then resume ownership of the monitor and continue executing.

If a waiting thread is not explicitly notified, it will wait forever.

• public final native void notify(): Informs a waiting thread that the state of an object

has changed and that the waiting thread can resume ownership of the thread's monitor.

Both methods should only be called by a thread that is the owner of this object's monitor, i.e. by

threads that have executed a synchronized method of that object. Only one thread at a time can

own an object's monitor.

Note that you do not have to call either the wait or notify method in order to perform proper

synchronization. However, if you do call upon the wait method, you must make sure that a matching

notify method is also called. If there is a wait without a corresponding notify, a thread will be in a

wait state that it can no longer exit.

Using a fairly simple (and unfortunate) combination of wait and notify calls can result in a

deadlock situation where two threads wait on each other's notify method to be called but neither

will call its notify method because it is waiting on the other thread to do so.

Example 5.19: A deadlock situation

Below are two classes, one extending thread and the other containing calls to the wait and notify

method (they are modeled after the Bank and Customer classes in example 5.16). Execute DeadLock

and observe what happens. Explain.

import java.awt.*;
import java.awt.event.*;

public class DeadLock extends Frame
{ protected static final String[] NAMES = {"A", "B"};
 private int accounts[] = {1000, 1000};
 private TextArea info = new TextArea(5,40);
 private TextArea status = new TextArea(5,40);
 public DeadLock()
 { super("Deadly DeadLock");
 setLayout(new GridLayout(2,1));
 add(makePanel(info, "Accounts")); add(makePanel(status, "Threads"));
 validate(); pack(); show();
 DeadLockThread A = new DeadLockThread(0, this, status);
 DeadLockThread B = new DeadLockThread(1, this, status);
 addWindowListener(new WindowAdapter()
 { public void windowClosing(WindowEvent we)
 { System.exit(0); }
 });
 }
 public synchronized void transfer(int from, int into, int amount)
 { info.append("\nAccount A: $" + accounts[0]);
 info.append("\tAccount B: $" + accounts[1]);
 info.append("\n=> $" + amount + " from " + NAMES[from] +
 " to " + NAMES[into]);
 while (accounts[from] < amount)
 { try
 { wait(); }
 catch(InterruptedException ie)

Java by Definition Chapter 5: Exceptions and Threads Page 51 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

 { System.err.println("Error: " + ie); }
 }
 accounts[from] -= amount;
 accounts[into] += amount;
 notify();
 }
 private Panel makePanel(TextArea text, String title)
 { Panel p = new Panel();
 p.setLayout(new BorderLayout());
 p.add("North", new Label(title)); p.add("Center", text);
 return p;
 }
 public static void main(String args[])
 { DeadLock bank = new DeadLock(); }
}

import java.awt.TextArea;

public class DeadLockThread extends Thread
{ private DeadLock bank;
 private int id;
 private TextArea display;
 public DeadLockThread(int _id, DeadLock _bank, TextArea _display)
 { bank = _bank;
 id = _id;
 display = _display;
 start();
 }
 public void run()
 { while (true)
 { int amount = (int)(1500 * Math.random());
 display.append("\nThread " + DeadLock.NAMES[id] + " sends $" +
 amount + " into " + DeadLock.NAMES[(1-id)]);
 try
 { sleep(20);
 }
 catch (InterruptedException ie)
 { System.err.println("Interrupted"); }
 bank.transfer(id, 1-id, amount);
 }
 }
}

Both classes compile fine and when we execute DeadLock money will start to get transferred between

the two accounts (compare example 5.16). However, after a short while the program will hang – no

further output is produced, yet no error message is shown. The program simply stops working. If you

execute it again, the same thing will happen but not necessarily after the same number of steps. This

suggests some kind of exceptional condition that only occurs in special situations.

Java by Definition Chapter 5: Exceptions and Threads Page 52 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

Figure 5.21: Two runs of DeadLock execute then "hang" without apparent reason

Here is why our program is running into a problem in figure 5.21 on the left (the case on the right is

similar):

• account A contains $975, account B = $1,025 prior to hanging

• thread A wants to send $1,154 into account B

• account A does not have sufficient funds, so thread A waits to be notified of a change

• now thread B wants to send $1,208 into account A

• account B also does not contain enough money so thread B also waits

Each thread is waiting for the other to notify it about a change in the account status, but since both

of them are waiting the program comes to a halt. A deadlock situation has arisen and Java, by itself,

can do nothing about it. Our threads will wait forever on each other.

�

The deadlock, in principle, would be easy to break. Allow A to transfer the money, leaving

temporarily -$179 in its account and $2,179 in account B. Now account B has enough money to

transfer $1,208, leaving $1,029 in account A (positive again) and $971 in account B. Unfortunately

our program does not allow negative accounts at any time, even temporarily, thus resulting in the

deadlock situation (and actually, some banks also don’t allow negative balances, even temporarily).

Dead Lock

A deadlock is a situation where all threads executing in a particular application or applet are put

into the wait state in such a way that each thread is waiting for another thread to notify it of a

change in the state of the object.

Java can do nothing to avoid deadlock situations, or to automatically resolve them should they

occur. Responsibility for avoiding deadlocks rests entirely with the programmer. The

programmer must make sure that the code is structured in such a way that a deadlock can not

occur.

Java by Definition Chapter 5: Exceptions and Threads Page 53 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

The hardest part in avoiding deadlocks is to realize under which conditions they could happen. Once

that has been figured out, it is usually not too hard to modify the code so that the deadlock can not

occur.

Example 5.20: Preventing a deadlock situation

What would have to change in the above classes DeadLock and/or DeadLockThread to avoid a

possible deadlock situation?

A we mentioned before, we could of course allow negative balances even though that would not be

desirable from the bank's point of few, so another solution is required.

The deadlock can arise because each thread is allowed to move a random amount between 0 and

$1500. Initially, each account contains $1000 for a total sum of $2000. If we restrict the maximum

amount of money that each thread could move during one transaction to any number less than

$1000, no deadlock can result: the combined total of accounts is $2000, and both accounts are always

positive (because of the way the transfer method works). That means that at any given time, one of

the two accounts must always contain $1000 or more. Therefore, one of the two threads will always

be able to move an amount of less than $1000 into the other account, and therefore one of the two

threads will always be able to change the state of the accounts, thus calling notify to awaken the

waiting thread.

You should modify the DeadLockThread program accordingly and run DeadLock again. This time the

program should continue to move money around until you exit it without any deadlock situation.

�

Incidentally, in our original Bank/Customer program no deadlock can occur: for one thing, we have, in

that class, set a maximum of $1,000 per transfer. With eight total accounts, each containing initially

$1,000, at least one of these accounts must again contain $1,000 or more. The thread corresponding

to that account will eventually break any possible deadlock between the other threads. More

importantly, though, in that earlier example we did not put the threads into waiting mode in the

first place. Instead, we simply did not conduct the requested transfer at all if the funds were not

sufficient. Therefore, no deadlock could arise in principle in that class. 30

While Java's support for threads, and in particular for synchronized threads, is indeed very

convenient and powerful, troublesome situations can still arise. The problem of deadlocks and how to

efficiently resolve them is, in fact, a difficult topic that could easily fill a separate book.

For example, deadlock situations could occur within any GUI program that uses more than one

thread, because many of the methods that Java provides for its GUI classes (such as List) are

synchronized methods and can, in principle cause a deadlock situation. However, most Java

programs – while frequently using threads – are content with using only one thread, or using

threads in such a way that deadlocks cannot arise. Therefore, we will conclude our discussion of

threads at this point and move on to a topic where threads are indeed used almost all the time,

implicitly or explicitly: multimedia and advanced graphics techniques.

30 If the limit was bigger than $1000, it would be possible for no transfers to occur at all for some time, which is
different from the program hanging.

Java by Definition Chapter 5: Exceptions and Threads Page 54 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

Case Study: Simulation and Time

import java.awt.*;
import java.awt.event.*;

public class Simulator extends Frame implements ActionListener
{ protected static final int NUM_AGENTS = 10;
 protected static final int NUM_INITIAL_AGENTS = 6;
 protected static final int MAX_CUSTOMER_DELAY = 9000;
 protected static final int MAX_TELLER_BREAK = 1000;
 protected static final int MAX_NO_CUSTOMERS = 2000;
 private Button open = new Button("Open Doors");
 private Button close = new Button("Close Doors");
 private Button add = new Button("Add Handler");
 private Button del = new Button("Del Handler");
 private Bank bank = new Bank();
 private Supermarket supermarket = new Supermarket();
 private class WindowCloser extends WindowAdapter
 { public void windowClosing(WindowEvent we)
 { bank.stop();
 supermarket.stop();
 System.exit(0);
 }
 }

 public Simulator()
 { super("Simluation Bank vs Supermarket");
 Panel buttons = new Panel();
 buttons.setLayout(new FlowLayout());
 buttons.add(open); open.addActionListener(this);
 buttons.add(close); close.addActionListener(this);
 buttons.add(add); add.addActionListener(this);
 buttons.add(del); del.addActionListener(this);
 addWindowListener(new WindowCloser());

 setLayout(new BorderLayout());
 add("West", bank); add("East", supermarket); add("South", buttons);
 validate(); pack(); show();

 bank.start();
 supermarket.start();
 }
 public void actionPerformed(ActionEvent ae)
 { if (ae.getSource() == open)
 { bank.openDoor();
 supermarket.openDoor();
 }
 else if (ae.getSource() == close)
 { bank.closeDoor();
 supermarket.closeDoor();
 }
 else if (ae.getSource() == add)
 { bank.addAgent();
 supermarket.addAgent();
 }
 else if (ae.getSource() == del)
 { bank.retireAgent();
 supermarket.retireAgent();
 }

Java by Definition Chapter 5: Exceptions and Threads Page 55 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

 }
 public static void main(String args[])
 { Simulator smlt = new Simulator(); }
}

import java.awt.*;
import java.awt.event.*;

public abstract class Business extends Panel implements Runnable
{ protected Agent[] agent = new Agent[Simulator.NUM_AGENTS];
 protected Label[] labelAgent = new Label[Simulator.NUM_AGENTS];
 protected Label labelQueue = new Label("Customers waiting: 0");
 protected Label labelServed = new Label("Customers servers: 0");
 protected Label labelWait = new Label("Average wait: 0");
 protected int numAgents = Simulator.NUM_INITIAL_AGENTS;
 protected int numCustomer = 0;
 protected long totalWait = 0L;
 private Thread thread = null;
 private boolean doorIsOpen = false;

 public Business(String title)
 { super();
 setup(title);
 }
 public abstract void generateCustomer();
 public abstract Customer requestCustomerFor(int ID);
 public abstract void updateDisplay();
 public void checkoutCustomer(int handled, long waitTime)
 { numCustomer++;
 totalWait += waitTime;
 }
 public void addAgent()
 { if (numAgents < Simulator.NUM_AGENTS)
 { agent[numAgents] = new Agent(this, numAgents);
 agent[numAgents].start();
 numAgents++;
 }
 }
 public void retireAgent()
 { if (numAgents > 1)
 { agent[numAgents-1].halt();
 numAgents--;
 }
 }
 public void start()
 { if (thread == null)
 { thread = new Thread(this);
 doorIsOpen = true;
 thread.start();
 for (int i = 0; i < numAgents; i++)
 agent[i].start();
 }
 }
 public void stop()
 { doorIsOpen = false;
 thread = null;
 for (int i = 0; i < numAgents; i++)
 agent[i].halt();
 }
 public void openDoor()
 { doorIsOpen = true; }
 public void closeDoor()

Java by Definition Chapter 5: Exceptions and Threads Page 56 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

 { doorIsOpen = false; }
 public void run()
 { while (thread == Thread.currentThread())
 { try
 { thread.sleep((int)(Math.random()*Simulator.MAX_NO_CUSTOMERS));
 if (doorIsOpen)
 generateCustomer();
 updateDisplay();
 }
 catch(InterruptedException ie)
 { System.out.println("Business exception: " + ie); }
 }
 }
 private void setup(String title)
 { Panel agentPanel = new Panel();
 agentPanel.setLayout(new GridLayout(Simulator.NUM_AGENTS + 3, 1));
 for (int i = 0; i < Simulator.NUM_AGENTS; i++)
 { labelAgent[i] = new Label("Agent " + i + ": served 0");
 agentPanel.add(labelAgent[i]);
 agent[i] = new Agent(this, i);
 }
 for (int i = numAgents; i < Simulator.NUM_AGENTS; i++)
 labelAgent[i].setText("Agent " + i + ": inactive");
 agentPanel.add(labelQueue);
 agentPanel.add(labelServed);
 agentPanel.add(labelWait);
 setLayout(new BorderLayout());
 add("Center", agentPanel);
 add("North", new Label(title));
 }
}

import java.awt.*;
import java.awt.event.*;

public class Bank extends Business implements Runnable
{ private Queue queue = null;

 public Bank()
 { super("The Bank");
 queue = new Queue();
 }
 public void updateDisplay()
 { labelServed.setText("Customers served: " + numCustomer);
 if (numCustomer != 0)
 labelWait.setText("Average wait: " + (totalWait / numCustomer));
 for (int i = 0; i < numAgents; i++)
 labelAgent[i].setText("Agent "+i+": served "+agent[i].getHandled());
 for (int i = numAgents; i < Simulator.NUM_AGENTS; i++)
 labelAgent[i].setText("Agent " + i + ": inactive");
 labelQueue.setText("Customers waiting: " + queue.getSize());
 }
 public void generateCustomer()
 { queue.insert(new Customer()); }
 public Customer requestCustomerFor(int ID)
 { return queue.requestCustomer(); }
}

import java.awt.*;
import java.awt.event.*;

public class Supermarket extends Business

Java by Definition Chapter 5: Exceptions and Threads Page 57 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

{ private Queue[] queue = new Queue[Simulator.NUM_AGENTS];

 public Supermarket()
 { super("The Supermarket");
 for (int i = 0; i < queue.length; i++)
 queue[i] = new Queue();
 }
 public void updateDisplay()
 { labelServed.setText("Customers served: " + numCustomer);
 if (numCustomer != 0)
 labelWait.setText("Average wait: " + (totalWait / numCustomer));
 int totalSize = 0;
 for (int i = 0; i < numAgents; i++)
 { totalSize += queue[i].getSize();
 String s = "Agent " + i + ": served " + agent[i].getHandled();
 labelAgent[i].setText(s + " [" + queue[i].getSize() + " waiting]");
 }
 for (int i = numAgents; i < Simulator.NUM_AGENTS; i++)
 labelAgent[i].setText("Agent " + i + ": inactive");
 labelQueue.setText("Customers waiting: " + totalSize);
 }
 public void generateCustomer()
 { int index = 0;
 for (int i = 0; i < numAgents; i++)
 if (queue[i].getSize() < queue[index].getSize())
 index = i;
 queue[index].insert(new Customer());
 }
 public Customer requestCustomerFor(int ID)
 { // the queue is guarantied to release a new customer
 return queue[ID].requestCustomer();
 }
}

import java.util.Date;

public class Agent extends Thread
{ private boolean running = false;
 private Business business = null;
 private int ID = -1;
 private int numCustomers = 0;
 public Agent(Business _business, int _ID)
 { business = _business;
 ID = _ID;
 }
 public void start()
 { running = true;
 super.start();
 }
 public void halt()
 { running = false; }
 public int getHandled()
 { return numCustomers; }
 private void releaseCustomer(Customer customer)
 { numCustomers++;
 business.checkoutCustomer(numCustomers,customer.getWaitTime(new Date()));
 }
 public void run()
 { while (running)
 { try
 { sleep((int)(Math.random()*Simulator.MAX_TELLER_BREAK)+1000);
 Customer customer = business.requestCustomerFor(ID);

Java by Definition Chapter 5: Exceptions and Threads Page 58 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

 if (customer != null)
 { sleep(customer.getDelayTime());
 releaseCustomer(customer);
 }
 }
 catch(InterruptedException ie)
 { System.out.println("Teller exception: " + ie); }
 }
 }
}

import java.util.Date;

public class Customer
{ private Date created;

 public Customer()
 { created = new Date(); }
 public int getDelayTime()
 { return (int)(Simulator.MAX_CUSTOMER_DELAY * Math.random()); }
 public long getWaitTime(Date now)
 { return now.getTime() - created.getTime(); }
}

public class Queue
{ private List customers = new List();

 private synchronized Object performAction(String cmd, Object obj)
 { if (cmd.equals("insert"))
 { if (!customers.isFull())
 customers.add(obj);
 notify();
 return null;
 }
 else if (cmd.equals("size"))
 { return new Integer(customers.getSize()); }
 else if (cmd.equals("retrieve"))
 { while (customers.getSize() == 0)
 { try
 { wait(); }
 catch(InterruptedException ie)
 { System.out.println("Synch error in queue: " + ie); }
 }
 Customer c = (Customer)customers.get(0);
 customers.delete(0);
 return c;
 }
 else
 return null;
 }
 public void insert(Customer c)
 { performAction("insert", c); }
 public int getSize()
 { return ((Integer)performAction("size", null)).intValue(); }
 public Customer requestCustomer()
 { return (Customer)performAction("retrieve", null); }
}

Java by Definition Chapter 5: Exceptions and Threads Page 59 of 60
o

Bert G. Wachsmuth DRAFT, April 2009

Figure 5.22: Sample run of Simulator

Chapter Summary

Java by Definition Chapter 5: Exceptions and Threads Page 60 of 60
o

Bert G. Wachsmuth DRAFT August 2000

