
Java by Definition Chapter 2: Basic Programming Page 1

Bert G. Wachsmuth Version 1.0, August 2000

Chapter 2: Basic Programming

Up to now we created programs that defined the standard program entry point public static void

main and executed their code from that point on. We learned how to manipulate the flow of execution

using if, for, and while constructs and how to use the basic data types in Java. While that approach

works fine for small projects, it is not sufficient for medium or large-scale projects.

Programs to solve more complicated tasks group segments of code into functional units called

methods and use custom-made types that include data elements and operations to perform work.

This chapter will focus on creating complete programs using methods while chapter 3 will show how

to create new types called classes.

Section 2.1 introduces methods and shows how data can flow into and out of them. Section 2.2

focuses on the life span of variables called their scope. Section 2.3 presents the new data type array

to group variables of the same type together into blocks. Section 2.4 focuses on creating 'good'

programs by providing suggestions for using proper comments and for testing your code. It includes a

Console class to easily obtain user input. In section 2.5 we learn to embed simple data types in

wrappers to enhance their functionality. The last section, which is optional, provides a case study

that pulls together most of the concepts introduced so far to create a program that solves a system of

linear equations.

Quick View

Here is a quick overview of the topics covered in this chapter.

(*) This section is optional but recommended

(**) This section is optional

2.1. Methods and Parameters
Methods; Parameter Passing; Reference Types as Parameters

2.2. Fields and Scope
Fields and Local Variables; Scope Rules

2.3. Arrays
Declaring and Initializing Arrays; Arrays as Input Parameters; Higher-Dimensional Arrays

(*) 2.5. Wrapper Classes for Basic Data Types

2.4. Documenting,Testing, and Keyboard Input
Implementation and Documentation Comments; The Console Class for Keyboard Input;

Testing and Debugging Code

(**) Case Study: Solving a System of Linear Equations

Java by Definition Chapter 2: Basic Programming Page 2

Bert G. Wachsmuth Version 1.0, August 2000

2.1. Methods and Parameters

Java provides a variety of mechanisms to break up a project into smaller units, each responsible for

handling a well-defined part of the overall goal. The best and most versatile approach uses classes to

define these units, but for now we will focus on a more elementary approach.1

Methods

Methods

A method
2
 is a named segment of code that performs a small, well-defined task. It has a header

that specifies how to exchange information with other methods and a body that defines what it is

doing. Methods can call other methods, or in turn be called by other methods. Methods can have

input parameters defined in the header to adjust their behavior and they can return a single value

to the entity calling them.

Methods are defined inside the body of a class. They have the following syntax:

 [public static] returnType methodName(parameterList)
 { /* method body */ }

where

• public static are keywords that at this stage must be present
3

• returnType is a known data type or the special keyword void for no return type

• methodName is a valid Java name

• parameterList is a comma-separated list of typed input parameters, or empty

We have already used a method named main in every complete program of chapter 1:

public class ClassName
{ public static void main(String args[])
 { /*... more code ... */ }
}

To phrase this basic framework in a different way, we could say:

Java Program

A Java program is a named class that contains at least the keywords public class ClassName

and at least one method inside the class body called main with the method header public

static void main(String args[]).Execution of the program begins with that method.

 public class ClassName

1
 We will define class in chapter 3.

2
 Other programming languages use the term function or procedure instead of method. Pascal, for example, calls

methods without a return value procedures, those with return values functions.
3
 In chapter 3 we will explain what the significance of static is and why it must be present at this stage.

Java by Definition Chapter 2: Basic Programming Page 3

Bert G. Wachsmuth Version 1.0, August 2000

 { /* other methods as needed */
 public static void main(String args[])
 { /* the body of the main method */ }
 }

Class5ame

returnType otherMethod(inputList)

body of optional method(s)

public static void main(String args[])

body of method; execution starts with this method

Figure 2.01: Representation of a Java Program

The beginning of a method is at its header, but execution of a method can stop at various points

inside the method body.

Method Exit Point

A method has exactly one entry point defined by the method header but it can have multiple exit

points where the method stops executing and returns control to another entity. An exit point can

be defined using the keyword return and methods returning void have a default exit point:

• If the returnType of the method is not void, the keyword return must occur at least once in

the method body and must return a value of the type specified as returnType in the method

header. Once a return statement executes, no other code of the method executes.

• If the returnType is void and the keyword return is not present, then the last line in the

block of the method is the default exit point. You can create alternate exit points by using the

keyword return by itself.

Example 2.01: Using methods to compute properties of a square

Create a complete program to compute the area and perimeter of a square. Use a

separate method for each computation.

Problem Analysis: We can divide this task into three subtasks:

1. Compute the area of a square, given its side length

2. Compute the perimeter of a square, given its side length

3. Decide when and how to apply (1) and (2) and display the results

Step 1: The method to compute the area requires one input parameter for the side length of the

square and returns its area:

public static double computeArea(double side)
{ return side * side; }

In other words, we define a method named computeArea that takes as input a double value named

side (representing the side length of a square) and produces as its result the value of side * side.

Java by Definition Chapter 2: Basic Programming Page 4

Bert G. Wachsmuth Version 1.0, August 2000

Step 2: The second method is closely related. It uses one input parameter and returns the perimeter

of the square:

public static double computePerimeter(double side)
{ return 4.0 * side; }

Step 3: The main method puts everything together and decides when to invoke the two methods and

what to do with the values they return:

public static void main(String args[])
{ double side = 10.0;
 double area = computeArea(side);
 double perim = computePerimeter(side);
 System.out.println("Side: " + side);
 System.out.println("Area: " + area);
 System.out.println("Perimeter: " + perim);
}

We can combine the three methods into a working program:

public class SquareProperties
{ public static double computeArea (double side)
 { return side * side; }
 public static double computePerimeter(double side)
 { return 4.0 * side; }
 public static void main(String args[])
 { double side = 10.0;
 double area = computeArea(side);
 double perim = computePerimeter(side);
 System.out.println("Side: " + side);
 System.out.println("Area: " + area);
 System.out.println("Perimeter: " + perim);
 }
}

class SquareProperties

double computePerimeter(double side)

body of computePerimeter method

public static void main(String args[])

body of main method, calling
computeArea and computePerimeter

double computeArea(double side)

body of computeArea method

Figure 2.02: A representation of the SquareProperties class

�

At first it might appear as overkill to use three methods to solve this simple problem. We could

handle all the work in a single main method and the code would be shorter. But classes that only

contain one method are usually ill designed and not as flexible as they should be. In our example we

can reuse the methods computeArea and computePerimeter every time we need to compute the area

and perimeter of a square, even in different classes or programs.

Java by Definition Chapter 2: Basic Programming Page 5

Bert G. Wachsmuth Version 1.0, August 2000

Software Engineering Tip: Methods are particularly well suited to solve small, well-defined

subsets of a bigger task. We can and should subdivide a task we want to solve, break it up into

little subtasks, and then solve each subtask using individual methods. This process is called

modularization. As a rule, each method should be as simple and as short as possible.

Breaking up larger tasks into subtasks works especially well for more difficult problems:

Example 2.02: Using methods to find the sum of prime numbers

In example 1.33, we created a program to find the sum of all prime numbers less than

10,000. Rewrite this program, using one or more appropriate methods.

Problem Analysis: There are clearly two subtasks to perform here:

1. find out whether a given number is prime

2. add prime numbers less than 10000 to a running total

Step 1: The first subtask calls for a method returning true if the input number is prime and false if

it is not. We already saw the basic code for that in example 1.32, so we can simply wrap that code in

a method with an appropriate name, input parameter, and return type:

public static boolean isPrime(int number)
{ int i = 2;
 while ((i < number) && ((number % i) != 0))
 i++;
 if (i == number)
 return true;
 else
 return false;
}

Step 2: The isPrime method does the hard work of testing an input number for being prime and it is

now easy to sum up prime numbers less than 10,000:

public static void main(String args[])
{ int primeSum = 1;
 for (int x = 1; x < 10000; x++)
 { if (isPrime(x))
 primeSum += x;
 }
 System.out.println(primeSum);
}

�

In the above example the main method delivers the answer 5,736,397, which may or may not be

correct. If we replace 10,000 by 10 in the for loop of the above main method and recompile and

execute the new program, it delivers the answer 18, which is correct: 1 + 2 + 3 + 5 + 7 = 18. Having

checked our methods in this simple case we are inclined to believe that the original answer 5,736,397

is correct as well.4

4
 On the other hand, if we replace 10,000 by 1,000,000 in our main method the program delivers a negative answer.

That is obviously incorrect and is caused by integer overflow as explained in chapter 1.

Java by Definition Chapter 2: Basic Programming Page 6

Bert G. Wachsmuth Version 1.0, August 2000

Software Engineering Tip: It is often difficult to determine whether a program works

correctly. Therefore we should always test any program in one or more simple cases, verifying

the answers by hand. We should also analyze every answer by looking for obvious mistakes.

While the main method seems to compute the correct answer, the method isPrime is not entirely

correctly: if the input value is 1 the method will return false even though 1 is a prime number. In

our use of the method it does not make a difference, because we have already taken 1 into account by

initializing the variable primeSum to 1 before using the isPrime method. Since we may at a later time

use isPrime again we should make sure it works exactly as its name applies. Therefore, we should

rewrite it as follows:

public static boolean isPrime(int number)
{ if (number == 1)
 return true;
 else
 { int i = 2;
 while ((i < number) && ((number % i) != 0))
 i++;
 if (i == number)
 return true;
 else
 return false;
 }
}

By initializing the variable primeSum in the main method to zero we are certain that we do not add 1

(which will now be certified as a prime number by isPrime) twice.

�

Software Engineering Tip: Choose every method name carefully. It should clearly indicate

what the method is doing. If there are even slight differences between the implied meaning of a

method name and its actual performance, change the method so that it performs as its name

implies.

Parameter Passing

In previous examples we defined and used simple methods that required one input parameter and

worked much like standard mathematical functions. Since methods can require more than one input

parameter, or none, we need to clarify the process of passing parameters into a method. In

particular, what happens if a method receives an input value and then changes that value? Will that

change be visible outside the method?

Input Parameters for Methods

When calling a method with an empty input parameter list, use the method name and a set of

empty parentheses.

When calling a method with a non-empty input parameter list, use the method name and as many

comma-separated expressions as there are parameters in the input list. Each expression must be

of the same or compatible type as the corresponding input parameter.

Java by Definition Chapter 2: Basic Programming Page 7

Bert G. Wachsmuth Version 1.0, August 2000

All input parameters for methods are value parameters where the value of the input expression is

copied into the corresponding variable in the method header. Any change that the method causes

to its variables is not visible outside that method.
5

Class5ame

void aMethod(double d, int i, boolean t)

public static void main(String args[])

double x=1.0; int y=2; boolean b=true;
aMethod(x, y, b)

Variable value
 x = 1.0

 y = 2
 b = true

Variable value
 d = 1.0
 i = 2
 t = true

Figure 2.03: Matching input parameters and variables to call method

Software Engineering Tip: Some programming languages offer a choice to declare input

variables as value parameters (where the value is copied into a new variable) or as reference

parameters (where two variables refer to the same data). Java offers only value parameters and

changes that should find their way out of the method must be specified using return.6

Example 2.03: Illustrating value parameters

Create a program that contains one method with one input parameter and void return

type in addition to the main method. Change the value of the input parameter in the

method and check whether this change is visible in the main method.

Let's define a method with an integer input parameter, increment the value of that variable inside

the method, then see if that change is visible to the main method by displaying the value of the

original variable.

public class ValueParameter
{ public static void aMethod(int input)
 { System.out.println("Value of input at start of aMethod: " + input);
 input += 10;
 System.out.println("Value of input at end of aMethod: " + input);
 }
 public static void main(String args[])
 { int number = 10;
 System.out.println("Value before calling method: " + number);
 aMethod(number);
 System.out.println("Value after calling the method: " + number);
 }
}

Figure 2.04 shows the result after running this program:

5
 A method can change the state of an object that a parameter refers to, which is visible outside the method.

6
 See “Reference Types as Input Parameters” for details.

Java by Definition Chapter 2: Basic Programming Page 8

Bert G. Wachsmuth Version 1.0, August 2000

Figure 2.04: Execution Results for ValueParameter.java

The variable number is initialized to 10 in the main method, then this value is copied into the variable

input in the method header of aMethod.

class ValueParameter

aMethod(int input)

public static main(String args[])

int number = 10;

aMethod(number)

number: 10

number: 10

input += 10;

input: 10

input: 20

Variable state

Variable value

Figure 2.05: Parameter passing

The method changes the value of input to 20, but upon exiting the value of number remains 10. The

value of number is copied into input but they are separate entities and can change independently.

�

Results of a computation or a method can also be used as input parameters as long as they are type-

compatible.

Example 2.04: Illustrating valid input expressions

Look at the program listed below. If the compiler would flag an error, please explain that

error. Discard lines that result in a compiler error and list the output of the program.

1 public class Squared
2 { public static double square(double x)
3 { return x*x; }
4 public static int cube(int i)
5 { return i*i*i; }
6 public static double power(double base, int exp)
7 { double result = 1;
8 for (int i = 1; i <= exp; i++)
9 result *= base;
10 return result;
11 }
12 public static void main(String args[])
13 { double x = 2.0;
14 double y = square(square(square(x)));
15 System.out.println("x: " + x + ", y: " + y);
16
17 int i = 2;
18 int j = cube(cube(cube(i)));
19 System.out.println("i: " + i + ", j: " + j);
20
21 int z = cube(square(i));

Java by Definition Chapter 2: Basic Programming Page 9

Bert G. Wachsmuth Version 1.0, August 2000

22 int w = square(cube(i));
23
24 System.out.println(power(square(x)+cube(i), 4/3+1));
25 }
26 }

Step 1: To analyze which lines result in a compiler error we check which expressions are type-

compatible with the corresponding input parameters.

• The method square expects a double as input and returns a

double value. Therefore line 14 will compile fine.

square(square(square(x)))

double

double

double
• The method cube expects an int as input and returns an

int. Therefore line 18 will compile fine.

cube(cube(cube(i)))

int
int

int

• The square method expects a double as input, but can use

an int value just fine. It returns a double value, which is

not compatible with the integer input of cube. Therefore line

21 results in a compiler error.

cube(square(i))

double

int

• The cube method in line 22 receives an integer value as

input, which works fine. It returns an integer value used as

input to the square method. That again works fine. But the

square method will return a double value, which can not be

stored in the integer variable w, so that line 22 will not

compile.

int w = square(cube(i))

int

int

double

• In line 24 square(x) + cube(i) will automatically evaluate

to a double, which is what the power method expects as its

first input value. The value 4/3+1 contains integer division

and results in an int value. That is what power expects as

its second input value, so line 24 will compile fine.

power(square(x)+cube(i),4/3+1)

intdouble

int

double int

double

All remaining lines will compile without problems.

Step 2: We will discard lines 21 and 22 and determine the output of the remaining program. In line

13 x is given the value of 2.0. Therefore square(x) will return the value of 4.0, square(square(x))

is equivalent to square(4.0) so it will return 16.0. Finally square(square(square(x))) is

equivalent to square(16.0) so it will return the value 256.0 and line 15 results in:

x: 2.0, y: 256.0

Similarly, cube(cube(cube(i))) is equivalent to cube(cube(8)) or to cube(512), which evaluates to

5123 = 134,217,728. Therefore, line 19 shows:

i: 2, j: 134217728

Finally, power(square(x)+cube(i), 4/3+1)) is equivalent to power(4.0 + 8, 1 + 1), or to

power(12.0, 2), resulting in 144.0. Therefore, line 24 produces:

144.0

�

Java by Definition Chapter 2: Basic Programming Page 10

Bert G. Wachsmuth Version 1.0, August 2000

Reference Types as Parameters

Parameter passing has different side effects if the state of an object that a variable points to is

modified in a method instead of the variable's value. To understand this we need to explain the

difference between reference variables and variables of basic type:

Reference Type

A variable of reference type is a variable whose identifier acts as an access point to the data but

does not represent the data itself. A reference variable is declared as usual, but must be

initialized using the special keyword new.
7

All types except for the basic data types short, int, long, float, double, char, and boolean are

reference types.

Main Memory

Basic Type:

Reference Type

varName value

varName data

Figure 2.06: Reference Type

The only reference types we currently know are String and StringBuffer. Strings are an exception

to the rule that reference variables must be initialized using new, but they are reference types.

Software Engineering Tip: It is important to understand that a reference variable only acts as

access point to data and does not represent the data directly8:

• If you change the value of a reference variable it will refer to data located at a different

memory location.

• If you change the data pointed to by the reference variable, the variable itself does not

change, but the data does.

One of the manifestations of the difference between reference types and simple types is that

variables of reference type can not be checked for equality using the double-equal operator.

Checking Reference Variables for Equality

When using the double-equal == or not equal != operators to check two reference variables for

equality, the operators check whether both variables refer to the same object in memory, not

7
 In other programming languages this type of reference variable is called a pointer. Java is sometimes said not to

use pointers, but the contrary is true: All types except for basic types are pointers in Java, but you can use them as if

they were regular variables. One of Java's strengths is that it disguises the use of pointers so effectively.
8
 In many programming languages pointers require special syntax construction to access the data they refer to. Java

uses the dot operator for that purpose.

Java by Definition Chapter 2: Basic Programming Page 11

Bert G. Wachsmuth Version 1.0, August 2000

whether the objects themselves are equal. Only when two reference variables refer to the same

object in memory does the double-equal operator evaluate to true.

This explains the strange behavior we encountered in example 1.35 where we compared two strings

that should have been the same with the double-equal operator. Here is a similar example:

Example 2.05: Equality of String types

Suppose four variables are defined as in the code below:

String s1 = "Java by Definition";
String s2 = new String("Java by Definition");
String s3 = s2;
String s4 = "Java " + new String("by Definition");

Which ones would check out as equal using the double-equal operator?

These strings are equal in the sense that they contain the same characters in the same order. The

string operation "equals" as described in section 1.4 would show that all of them are equal in that

sense. However, that's not what the double-equal operator does: it checks instead which of these

reference variables refer to the same object in memory. Figure 2.07 shows the data to which our

reference variables point:

Main Memory

s2 Java by Definition

s3

s4 Java

s1 Java by Definition

by Definition+

Figure 2.07: Strings as Reference Types

Since s3 is assigned the value of s2, both refer to the same data in memory and (s2 == s3) should

return true. To see which other variables are "double-equal" we use a small program whose output is

shown in figure 2.08.

public class StringReferences
{ public static void main(String args[])
 { String s1 = "Java by Definition";
 String s2 = new String("Java by Definition");
 String s3 = s2;
 String s4 = "Java " + new String("by Definition");
 System.out.println("s1 == s2: " + (s1 == s2));
 System.out.println("s1 == s3: " + (s1 == s3));
 System.out.println("s1 == s4: " + (s1 == s4));
 System.out.println("s2 == s3: " + (s2 == s3));
 System.out.println("s2 == s4: " + (s2 == s4));
 System.out.println("s3 == s4: " + (s3 == s4));
 }
}

Java by Definition Chapter 2: Basic Programming Page 12

Bert G. Wachsmuth Version 1.0, August 2000

Figure 2.08: Execution Results for StringReferences

Only s2 and s3 point to the same object in memory, all other strings are located at different memory

locations.

�

Reference Types as Input Parameters

When a variable of reference type is used as input parameters to a method, its value, as usual, is

copied. If the method changes the value of the reference variable, that change is not visible to the

calling method. But if the method modifies the state of the data that the input variable refers to,

that change is visible to the calling method.

class Class5ame

void aMethod(refType input)

public static void main(String args[])

refType ref = new refType(data)
aMethod(ref)

Variable value

input

Variable value

ref

referred
data

Data

Figure 2.09: Reference type as method parameter

To provide an example we need to use either String or StringBuffer, the only reference types we

currently know.

Example 2.06: Using reference types as method input parameters

Create a program with two methods. The standard main method initializes two variables

of type String and StringBuffer, respectively, which are then used as input to the

second method. That method appends a string to both input variables. Which changes

are visible to the main method?

We need one main method to declare and initialize the variables and to call a second method with

those variables as input. The second method appends a value to both variables, using the append

method for the StringBuffer and the concatenation operator + for the String type, as explained in

section 1.4:

public class StringTester
{ public static void changeStrings(String s, StringBuffer sb)
 { s += " by Definition";
 sb.append(" by Definition");
 }
 public static void main(String args[])
 { String string = new String("Java");
 StringBuffer buffer = new StringBuffer("Java");

Java by Definition Chapter 2: Basic Programming Page 13

Bert G. Wachsmuth Version 1.0, August 2000

 changeStrings(string, buffer);
 System.out.println("String after method call: " + string);
 System.out.println("StringBuffer after method call: " + buffer);
 }
}

Figure 2.10 explains the situation when the program executes:

class StringTester

void changeString(String s, StringBuffer sb)

public static void main(String args[])

String string = new String("Java")

StringBuffer buffer = new StringBuffer("Java")

Variable value

s

Variable value

string

changeString(string, buffer)

buffer

sb

Java

Java

Data

Figure 2.10 (a): StringTester before changeString executes

class StringTester

void changeString(String s, StringBuffer sb)

public static void main(String args[])

String string = new String("Java");

StringBuffer buffer = new StringBuffer("Java")

Variable value

s

Variable value

string

changeString(string, buffer);
buffer

sb

Java by
Definition

s += " by Definition";

sb.append(" by Definition");

Data

Java by
Definition

Figure 2.10 (b): StringTester after changeString executes

As figures 2.10 (a) and (b) illustrate, the output of the program is:

C:\>java StringTester
String after method call: Java
StringBuffer after method call: Java by Definition

Inside changeString the String " by Definition" is concatenated to s, resulting in a new String

with value "Java by Definition". The variable s is then reset to point to that new data, but that

change is not visible outside the method. The variables s and string now refer to different data

values. The variable sb, on the other hand, uses the method append to modify the state of the data it

refers to. The value " by Definition" is added to that data while the value of sb does not change.

Since sb and buffer still refer to the same data, the change to the data is visible outside the method.

�

Software Engineering Tip: It is easy to see when the value of a reference variable changes

and when the data it refers to changes:

• If a reference variable is on the left side of an assignment operator, its value changes. Such

changes are not visible outside.

Java by Definition Chapter 2: Basic Programming Page 14

Bert G. Wachsmuth Version 1.0, August 2000

• If a reference variable is used with the dot operator, only the data can change. Such changes

are visible outside.

2.2. Fields and Scope

We have so far declared variables as needed, anywhere in our program and in method headers, but

we did not mention how long these variables remain valid and accessible. As it turns out, Java has

two types of variables as far as their longevity is concerned.

Fields and Local Variables

Variables can be defined inside a method, as we have done many times, as well as outside a method:

Fields and Local Variables

In Java, there are two types of variables:

• Variables that are defined inside a class but not inside a method. These variables are called

fields. The type of a field, currently, needs to be prefaced with the keyword static
9
. All

methods of a class have direct access to field variables.

• Variables that are declared inside a method when needed. These variables are called local

variables. Input variables declared in the method header are local variables of that method.

Figure 2.11 shows a class with one field named aField and four local variables named args, localX,

localY, and localZ. All variables are properly initialized except for args. The initial value of localY

is 1.0, since that value is copied from localX when aMethod is called.

class Class5ame

void aMethod(double localY)

double localZ = 3.0;

public staticvoid main(String args[])

double localX = 1.0;

double aField = 0.0;

aMethod(localX);

Figure 2.11: A class with one field and four local variables

Software Engineering Tip: Traditionally, fields are defined either at the beginning of the class

before defining methods, or at the end of the class after all methods have been defined. We

9
 Later, that restriction will no longer apply. As we will see in chapter 3, static methods can only refer to static

fields and other static methods. Since all our programs start from the static main method, all fields and methods

must be static at this stage.

Java by Definition Chapter 2: Basic Programming Page 15

Bert G. Wachsmuth Version 1.0, August 2000

recommend placing all fields at the beginning of a class so that they can be identified

immediately. Fields, just as local variables, should be initialized as they are declared.

Example 2.07: Illustrating fields and local variables

Define a short class with one field, one local variable, and one for loop. How many fields

and local variables does your class have?

A variable is defined as a field by placing its definition outside any method and prefacing it with the

keyword static. Local variables are declared as usual. Here is our code:

public class FieldsAndVars
{ static double aField = 10.0;

 public static void main(String args[])
 { double int aLocalVar = 20;
 for (int i = 0; i < 10; i++)
 System.out.println("i = " + i);
 }
}

There is clearly one field (aField) and one local variable (aLocalVar). But the variable i is also a

local variable, as well as the input variable args[] of the main method.

�

We now have four different types of variables:

Basic Types: variables that store data directly

Reference Types: variables that point to data in memory

Local Variables: variables declared inside method

Fields: variables that are declared outside all methods and accessible to all

methods

Scope Rules

The main difference between fields and local variables is their accessibility, which is explained in the

scope rules.

Scope Rules

The scope of a variable describes its longevity, or where in the code the variable is valid.

• Fields can be used anywhere in the class in which they are defined.
10

• Local variables are valid in the block in which they are defined.

• Local variable names within one block must be unique

• Duplicate field names are not allowed

10
 In chapter 3 we will learn that fields in one class can be referred to in other classes. Java has additional keywords

such as public or private to fine-tune access to fields across classes.

Java by Definition Chapter 2: Basic Programming Page 16

Bert G. Wachsmuth Version 1.0, August 2000

If a variable is declared twice, once as a field and again as a local variable, the closest or most

local definition counts and overrides the previous one.

Figure 2.12 shows an example of how these scope rules govern the validity of fields and variables.

class Class5ame

double x = 0.0;

t, x, y
are valid

x, y are
valid, (x
redefined)

y, x are

valid

x is valid
where not
redefined

args, x
are valid

y, t, args, x
are valid

Figure 2.12: Illustrating the scope of variables and fields

Example 2.08: Scope of fields and local variables

Where are the variables (fields and local ones) of example 2.07 valid?

That example contained one field aField, which is valid everywhere in the class. If there were more

methods aside from main, each one could access aField.

The local variables aLocalVar and args[] are declared within the block of the main method so they

can be accessed everywhere in the main method, including inside the for loop.

The local variable i is defined in the for loop. Therefore, it is valid inside that loop only and cannot

be accessed outside the loop.

�

Software Engineering Tip: If you need access to the value of a loop counter after a loop is

over, you need to declare the variable before the loop starts. A while loop works well in that

situation because its loop counter is initialized outside the loop and has therefore wider scope.

Example 2.09: Compound interest computation using fields

Write a program to compute the interest and balances if $10,000.00 are deposited for 10

years in an account at an interest rate of 6.5%, compounded once per year. The program

should display the interest for each year as well as the yearly amount including interest.

Problem Analysis: We first have to figure out the formulas involved. If you deposit amount dollars

at an interest rate of rate (in percent), then the interest after one year is

interest = amount * rate / 100

and the new amount is the old amount plus that interest

amount += interest

Java by Definition Chapter 2: Basic Programming Page 17

Bert G. Wachsmuth Version 1.0, August 2000

If we repeat that computation 10 times we have found the compounded interest after 10 years.11 This

indicates that we can divide our problem into two subtasks.

1. We need to compute the interest for one year and add it to the current amount

2. We need to repeat this computation 10 times (for the 10 years)

Program Implementation: We define two methods, one called computeInterest to compute the

interest and the new amount, and another method called main to repeat this computation 10 times.

The first method needs to know the interest rate as well as the current amount and should deliver

the computed interest as well as the new amount. That is a problem, since methods can only return

one value. Therefore we use a field for the yearly interest as well as the current amount. Since fields

are accessible to all methods, the current amount does not have to be an input parameter to the

method any longer. The second method to repeat the computation 10 times will be our standard main

method.

To make our program more flexible we use named constants (see section 1.5) as fields for the interest

rate and the number of years. Then computeInterest does not need the interest rate as input,

because fields are available to all methods in a class. In addition, computeInterest does not need to

return a value because it changes the field amount, which is visible to the main method.

class Interest

final double YEARS = 10;

final double RATE = 6.5;

double interest = 0.0;

double amount = 0.0;

void computeInterest()

modifies the values of and using interest amount RATE

void main(String args[])

calls 0 times (the value of ,

displaying the values of and each time.

computeInterest 1 YEARS

interest amount

)

Figure 2.13: Representation of the Interest program

To make sure our output looks nice, we use the decimal formatting tool as described in section 1.5:

import java.text.DecimalFormat;

public class Interest
{ final static double RATE = 6.5;
 final static int YEARS = 10;

 static double interest = 0.0;
 static double amount = 10000.0;

 public static void computeInterest()
 { interest = amount * RATE / 100;
 amount += interest;
 }
 public static void main(String args[])
 { DecimalFormat formatTool = new DecimalFormat("#,###.00");

11
 The mathematical formula for the compounded interest of x dollars at a rate of i% after n years, compounded p

times per year is

np

p

i
x

⋅










⋅
+⋅

100
1 . We could use that formula to verify the answers of our program.

Java by Definition Chapter 2: Basic Programming Page 18

Bert G. Wachsmuth Version 1.0, August 2000

 for (int i = 1; i <= YEARS; i++)
 { computeInterest();
 System.out.print("Year " + i);
 System.out.print("\tInterest: " + formatTool.format(interest));
 System.out.println("\tTotal: " + formatTool.format(amount));
 }
 }
}

Figure 2.14: Output of the Interest program

�

Software Engineering Tip: A natural question at this point is when to use fields and when to

use local variables. Since fields are accessible to all methods in a class they can act to transfer

information between methods. As a guide12:

• Use local variables if they are needed only within a method or are not used to transfer

information between methods.

• Use fields if several methods need access to the information stored in variables, or if methods

need to return more than one result13

Here is a final example illustrating the scope rules when fields and local variables have the same

name:

Example 2.10: Illustrating the scope rule

Consider the following program. If a variable is used outside its scope, say so. For all

valid variables, state their value at the appropriate System.out.println call.

1 public class TrickyScope
2 { static int x = 1;
3
4 public static void method1()
5 { int x = 10;
6 x += 10;
7 }
8 public static void method2(int y)
9 { x += 10;
10 y += 20;
11 z += 30;
12 }
13 public static void main(String args[])
14 { int z = 3;
15 method1();

12
 In chapter 3 we will see that fields represent the properties of an object and introduce a better guide to their use.

13
 Consider using more than one method instead, each returning only one value .

Java by Definition Chapter 2: Basic Programming Page 19

Bert G. Wachsmuth Version 1.0, August 2000

16 method2(z);
17 x += 1;
18 y += 2;
19 z += 3;
20 System.out.println(x);
21 System.out.println(y);
22 System.out.println(z);
23 }
24 }

Step 1: First we determine which lines are not valid by considering the scope of all variables:

• The variable x defined after the class name is a field and valid throughout the class

• The scope for the local variable x redefined in method1 is method1

• The scope for variable y is method2

• The scope for variable z (as well as args) is the main method

class TrickyScope

int x = 1;

 x is
valid
(redefined)

x is valid
where not

redefined

y, x are
valid

z, x, args
 are valid

Figure 2.15: TrickyScope.java scope representation

Therefore method2 uses z outside its scope and main uses y outside its scope so lines 11, 18, and 21

are invalid.

Step 2: Next we determine the values of the valid variables. The first method that executes is main.

It initializes z to 6 and calls method1, which declares another local variable named x, sets it to 10,

then increments it by 10. There are now two variables – one of which is a field – in method1 called x

and according to our scope rules only the most local or closest one counts. Therefore, the field x still

has value 1, whereas the local variable x in method1 with value 20 expires as soon as the method is

done.

Then method2 executes and the current value of z is copied into its local variable y. It then adds 10 to

the field x, giving it a value of 11. The local variable y is also incremented by 20, making it 23, but

that change is invisible to the main method.

Finally, the main method increments the value of the field x again by 1, making it 12. Skipping the

invalid statement in line 18, z is incremented by 3, making it 6. The final values are:

• x has the value 12

• z has the value 6

�

Java by Definition Chapter 2: Basic Programming Page 20

Bert G. Wachsmuth Version 1.0, August 2000

2.3. Arrays

So far we have manually declared every variable in a program that is supposed to store information.

This makes it difficult to create a program that can store, say, 1000 double numbers. We would have

to declare variables

double num1, num2, ..., num1000;

writing out every variable name in between. That, while possible, is of course not practical. Since it

is entirely feasible to have a need to store 1000 double values (for example, a program to compute

the GPA of all Undergraduates of a college), Java offers the possibility to define a whole slew of

variables in one declaration.

Declaring and Initializing Arrays

Declaring Arrays

An array is a sequential data structure that can store a fixed number of values of the same type.

Every Java array contains an additional variable named length to store the current size of the

array. Arrays are declared using empty square brackets.

 type arrayName[];14

The default value of an array is null. Arrays are reference variables regardless of the types of

their elements. They can be used as fields or local variables, or as input or output types of

methods.

When you declare an array you do not specify its size but before you can use an array you must

define its size to request the appropriate memory from the operating system.

Initializing Arrays

To initialize an array that has previously been declared you use the keyword new to define an

array of a specific size:

 arrayName = new type[size];

where size is an integer expression. You can declare and initialize arrays in one statement:

 type arrayName[] = new type[size];

Individual array elements have their usual default values. You can also implicitly declare and

initialize an array by listing its members in a comma-delimited list enclosed in curly brackets:

 type arrayName[] = { value1, value2, ..., valueN };

14
 Java allows an alternative declaration of the form type[] arrayName. We will not use that variation.

Java by Definition Chapter 2: Basic Programming Page 21

Bert G. Wachsmuth Version 1.0, August 2000

where value1, value2, ... valueN are of the same type.

Example 2.11: System.out.println applied to arrays

Create an array of 10 doubles, then try to print out the entire array using one

System.out.println statement. Does this give the desired result?

We will use the above definitions to declare and initialize an array in one statement, then use

System.out.println with the array as argument to see what happens:

public class ArrayDisplay
{ public static void main(String args[])
 { double A[] = new double[10];
 System.out.println(A);
 }
}

This code will compile fine but when we run it we get the output shown in figure 2.16:15

Figure 2.16: Result of using System.out.println on an array

�

Of course this is not what we expected, but at least it did print out something.

Software Engineering Tip: Every data type in Java can be displayed using the

System.out.println method. For simple data types the output consists of the values of the

variables. For more complicated types, including arrays, the output shows the memory address

where the data is stored. That is almost never of interest unless a variable points to null. Using

System.out.println can be a convenient way to check the status of variables that may not be

initialized correctly during the development stage of a program.16

Before we can continue, we need to know how to access and manipulate the elements in an array:

Accessing Array Elements

Arrays are indexed with integers starting at zero so that an array of size = has indices 0, 1, 2, …,

=-1. To access the elements of an array A you use square brackets and an integer expression

corresponding to the element you want to access:

 A[intExpression]

When you access an array element with an index that is too large or too small it will create a run-

time error with the message ArrayIndexOutOfBoundsException.

15
 The output will be different every time you execute the program.

16
 In chapter 3 we will see that we can add a method toString to a class, which will then be used automatically

whenever System.out.println is called on a variable of that class type.

Java by Definition Chapter 2: Basic Programming Page 22

Bert G. Wachsmuth Version 1.0, August 2000

Every array also contains a field called length that is set to the array's size during initialization.

To access that field, you use the array name, then a dot, then the keyword length:

 A.length

class Class5ame

void main(String args[])

int A[] = new int[5];

A[1] A[2] A[3] A[4]A[0]
Figure 2.17: Declaring an array of 5 integers

Example 2.12: Displaying an array

In example 2.11 we created an array of 10 doubles and displayed it using

System.out.println. Since that did not give the desired results, modify the code so that

all numbers stored in the array are printed out. Initialize the array elements to the

numbers 0 to 9 before displaying it.

We declare and initialize the array as before, while initializing the individual elements in a for loop:

double A[] = new double[10];
for (int i = 0; i < A.length; i++)
 A[i] = (double)i;

We use explicit type casting to convert the integer loop control variable i into a double even though

this conversion would take place automatically. To display the elements of the array on the screen

we use a similar loop:

for (int i = 0; i < A.length; i++)
 System.out.println(A[i]);

Figure 2.18: Displaying an array

Note that we have used A.length to control both for loops. If we want to display the numbers from 0

to 999 all we have to do is change the size of the array to 1000.

�

Java by Definition Chapter 2: Basic Programming Page 23

Bert G. Wachsmuth Version 1.0, August 2000

Software Engineering Tip: Arrays are almost always processed using one or more for loops.

To control such loops you should always use the length field of the array, never a numeric value.

That way your code adjusts automatically whenever the size of an array changes.17

Remember that the indices for an array A of length N are 0, 1, 2, …, N-1. In particular,

statements such as A[A.length] will generate a runtime error.

Arrays of any type can be defined, as long as all elements in the array have the same type.

Example 2.13: Arrays of String

Use an array to store the sentence "Java is an object oriented programming

language". Display that sentence and find the average number of characters per word.

Problem Analysis: To find the average number of characters per word we need to divide the total

number of characters by the number of words:

avg. chars per word = (total chars) / (number of words)

Program Implementation: To store the sentence we use an array of String called sentence,

initialized by a comma-delimited list enclosed in curly brackets. We use a for loop to display the

sentence, and the same loop to compute the total number of characters. Each array element is of

type String, therefore the method sentence[i].length() returns the number of characters in the i-

th word. A call to the field sentence.length will give us the number of words in sentence18:

public class AverageCharacters
{ public static void main(String args[])
 { String sentence[] = {"Java ", "is ", "an ", "object ", "oriented ",
 "programming ", "language"};

 int numChars = 0;
 for (int i = 0; i < sentence.length; i++)
 { System.out.print(sentence[i]);
 numChars += sentence[i].length();
 }
 System.out.println();
 System.out.println("Total chars: " + numChars);
 System.out.println("Total words: " + sentence.length);
 System.out.println("Avg. Chars: " + (double)numChars / sentence.length);
 }
}

�

Arrays as Input Parameters

Arrays can also be used as input and return types for methods. Since arrays are reference

parameters some special considerations apply when using them as input to methods.

17
 In fact, even when initializing an array the size should not be specified as a fixed number. Instead, a suitable int

field, variable, or named constant should be used.
18
 Note the difference between sentence.length and sentence[i].length(). Since sentence is an array, the field

sentence.length contains its size. But sentence[i] is of type String, so the method sentence[i].length()

returns the number of characters in that string.

Java by Definition Chapter 2: Basic Programming Page 24

Bert G. Wachsmuth Version 1.0, August 2000

Arrays as Method Parameters

Arrays can be used as input parameters for methods as well as for return types. They are

declared using empty square brackets without specifying the size.

Arrays are reference types. If they are used as input parameters, changes to the elements of the

array inside a method will be reflected outside the method.

Example 2.14: Arrays as method input parameters

What are the values that will be displayed in the following program:

public class ArrayParameters
{ public static void changeOrNot(int i, double x[])
 { i = -1;
 x[0] = -2.0;
 double y[] = x;
 y[1] = -3.0;
 double z[] = {-4,-4,-4};
 x = z;
 }
 public static void main(String args[])
 { int k = 1;
 double A[] = {1.0, 2.0, 3.0};
 changeOrNot(k, A);
 System.out.println("k: " + k);
 System.out.println("A[0]: " + A[0]);
 System.out.println("A[1]: " + A[1]);
 System.out.println("A[2]: " + A[2]);
 }
}

It is easy to explain what happens to the integer parameter i of changeOrNot: the value 1 is copied

into it from k, and since i is a value parameter of basic type nothing the method does to i inside the

method body is visible outside.

The tricky part is the array A. It is passed into the method changeOrNot and its value is copied to the

array x. Both A and x are separate variables pointing to the same data in memory. Therefore, when

x[0] changes to –2, so does A[0]. Then a new array y is declared and initialized to refer to the same

data as x. Therefore, x, y, and A now share the same elements, so that when y[1] changes to -3, so do

A[1] and x[1]. Finally, another array z is declared and initialized.

ArrayParameters

x[]
 i

 changeOrNotmain

 k
A[]

y[]2

3

z[]

-4

-4

-4

Figure 2.19: ArrayParameters state before changing x in the last line of changeOrNot

Java by Definition Chapter 2: Basic Programming Page 25

Bert G. Wachsmuth Version 1.0, August 2000

The value of x is changed so that x now points to the same data as z. That change is not visible

outside the method, since the value of x was copied from A and A still has its original value.

ArrayParameters

 changeOrNot

 i
x[]

main

y[]2

3

z[]

-4

-4

-4

 k
A[]

Figure 2.20: ArrayParameters state after changing x[]

Therefore, the printout will be:

k: 1
a[0]: -2.0
a[1]: -3.0
a[2]: 3.0

�

The next example uses arrays and methods in a complete program:

Example 2.15: Compound interest computation using arrays

Compute the compounded interest over 10 years if $10,000 are deposited at a yearly

interest rate of 6.5%, assuming that interest is compounded once per month (compare

example 2.09). The output should consist of the interest per year, the new yearly balance,

as well as the average interest amount up to that year.

This example is similar to example 2.09 but with two twists: the interest is compounded monthly

and we want to know the average interest up to a given year. Such an average, incidentally, is called

prefix average and is used frequently in finance.

Problem Analysis: To figure out what exactly we are supposed to do, we use a simple example that

we can compute manually. Let's assume we want to invest $100 at 20% for 3 years, compounded

twice per year. Then for each of the two interest computations per year the rate is ½ of 20%, or 10%.

The computations are easy for the first year:

• Start amount: $100

• Interest for first period: $100 * 10% = $100 * 0.1 = $10

• New amount after first period: $100 + $10 = $110

• Interest for second period: $110 * 10% = $110 * 0.1 = $11

• Total interest for first year: $10 + $11 = $21

• Total amount after first year: $100 + $21 = $121

Table 2.21 shows the amounts for year 1, 2, and 3 of our simple example.

 Intermediate Computation Final Amounts

Year Amount 1st Interest New Amount 2nd Interest Interest Amount

Java by Definition Chapter 2: Basic Programming Page 26

Bert G. Wachsmuth Version 1.0, August 2000

1 $100.00 $10.00 $110.00 $11.00 $21.00 $121.00

2 $121.00 $12.10 $133.10 $13.31 $25.41 $146.41

3 $146.41 $14.64 $161.05 $16.11 $30.75 $177.16

Table 2.21: Example of compound interest computation

• The average interest for the first year is: $21

• The average interest up to the second year is: ($21 + $25.41) / 2 = $23.20

• The average interest up to the third year is: ($21 + $25.41 + $30.75) / 3 = $26.72

Now it is clear that there are several steps involved:

1. Compute the yearly compound interest

2. Add the yearly interest to the balance for that year

3. Compute the average interest amounts

4. Show the results

Program Implementation: According to these four steps we need four methods:

• Method interestPerYear needs to know the beginning balance, the rate, and the number of

periods and returns the compounded interest for one year.

• Method adjustBalances adjusts the balance for each year.

• Method prefixAverage computes the average interest amount up to a given year. It needs

the interest amounts for each year to compute the prefix average. The output will be an

array where the i-th element corresponds to the average interest up to year i.

• Method showAmounts should display the balances, interests, and average interests for all

years on the screen.

We also need two arrays:

• an array to store the balances for each year

• an array to store the total interest for each year

Software Engineering Tip: Arrays are useful and – after a little experience – simple to use.

They should be declared whenever three or more variables of the same type are needed that have

some logical connection with each other.

We could define these arrays as fields, similar to example 2.09, but arrays are reference types. If a

method modifies the array elements, the modifications are visible outside the method. Therefore we

can use local variables declared and initialized in the standard main method. The arrays should be

input parameters to the various methods, so that our method headers are:

public static double interestPerYear(double amount)
public static void adjustBalances (double amount[], double interest[])
public static double[] prefixAvg(double A[])
public static void showAmounts(double amount[], double interest[],
 double avg[])

The remaining information such as the starting balance, interest rate, number of periods for yearly

compounding, and the number of years will be stored in constant fields available to all methods. Our

class so far looks as follows, with the main method completely implemented:

public class CompoundInterest
{ final static int NUM_YEARS = 10;
 final static int NUM_PERIODS = 12;

Java by Definition Chapter 2: Basic Programming Page 27

Bert G. Wachsmuth Version 1.0, August 2000

 final static double RATE = 6.5;
 final static double START_BALANCE = 10000;

 public static double interestPerYear(double amount)
 { }
 public static void adjustBalances(double amount[], double interest[])
 { }
 public static double[] prefixAvg(double A[])
 { }
 public static void showAmounts(double amount[], double interest[],
 double avg[])
 { }
 public static void main(String args[])
 { double amount[] = new double[NUM_YEARS];
 double interest[] = new double[NUM_YEARS];
 interest[0] = interestPerYear(START_BALANCE);
 amount[0] = START_BALANCE + interest[0];
 adjustBalances(amount, interest);
 showAmounts(amount, interest, prefixAvg(interest));
 }
}

Method interestPerYear is similar to example 2.09 but it returns the compounded interest on the

input amount for one year instead of adjusting the balance:

public static double interestPerYear(double amount)
{ double compoundInterest = 0.0;
 for (int i = 0; i < NUM_PERIODS; i++)
 { double interest = amount * RATE / 100 / NUM_PERIODS;
 amount += interest;
 compoundInterest += interest;
 }
 return compoundInterest;
}

Method adjustBalances calls on interestPerYear for each year to adjust the balances for all years

except the first and stores the computed interest amounts in the interest array. The first year was

already initialized in the main method:

public static void adjustBalances(double amount[], double interest[])
{ for (int year = 1; year < NUM_YEARS; year++)
 { interest[year] = interestPerYear(amount[year-1]);
 amount[year] = amount[year-1] + interest[year];
 }
}

The prefixAvg method uses a double for loop to compute the prefix averages. The outer loop goes

from year 0 to NUM_YEARS-1 year. For each value of that loop counter an inner loop computes the

average of the input array up to the value of the outer loop:

public static double[] prefixAvg(double A[])
{ double avg[] = new double[A.length];
 for (int year = 0; year < A.length; year++)
 { double sum = 0.0;
 for (int j = 0; j <= year; j++)
 sum += A[j];
 avg[year] = sum / (year +1);
 }
 return avg;
}

Java by Definition Chapter 2: Basic Programming Page 28

Bert G. Wachsmuth Version 1.0, August 2000

Finally, showAmounts will display all answers in an appropriate format:

public static void showAmounts(double amount[], double interest[],
 double avg[])
{ DecimalFormat formatTool = new DecimalFormat("#,###.00");
 for (int i = 0; i < NUM_YEARS; i++)
 { System.out.print("Year:\t" + (i+1));
 System.out.print("\tInt: " + formatTool.format(interest[i]));
 System.out.print("\tAmt: " + formatTool.format(amount[i]));
 System.out.println("\tAvg. Int: " + formatTool.format(avg[i]));
 }
}

Figure 2.22: Output of CompoundInterest program

Figure 2.22 shows that the interest increases year after year because the compounded balance gets

larger and larger. The average interest, on the other hand, implies that from year 1 to year 10 we

have received an average interest of $912.18, which is equivalent to an average interest rate of

9.12% without compounding. Thus, a fixed interest rate of 6.5% over 10 years, compounded monthly,

is approximately equivalent to a 9.12% fixed interest rate without compounding.

�

Now that we understand arrays as well as methods, we also understand what the header of the main

method means:

public static void main(String args[])

declares a method called main that returns nothing and has as input an array of strings referred to

by the local variable args. The value copied into args originates from the command line.

Command Line Input

A Java program can receive any number of parameters as input from the command line. These

input parameters are automatically stored in the array args declared in the header of the main

method. To pass values into a Java program
19

 invoke the program as follows:

 java ClassName "input value1" "input value2" ... "input value N"

The field args.length can be used to determine the number of input strings received.

19
 This feature can be used to pass user input into a program. All input parameters will be of type String, but they

can be converted to int or double if desired (compare with the Console class in section 2.4).

Java by Definition Chapter 2: Basic Programming Page 29

Bert G. Wachsmuth Version 1.0, August 2000

Example 2.16: Command line input to main method

Create a program that prints out the values that were passed into it from the command

line, if any, or an appropriate message if there were no command line parameters.

The variable args inside the main method automatically contains the values of the command line

parameters, if any. Its length field contains the number of strings that were specified:

public class CommandLine
{ public static void main(String args[])
 { if (args.length == 0)
 System.out.println("No command line arguments");
 else
 { System.out.println("Command line arguments were: ");
 for (int i = 0; i < args.length; i++)
 System.out.println("Argument " + (i+1) + ": " + args[i]);
 }
 }
}

Here are the results of two runs of this program:

Figure 2.23: A Java program with one command line parameter

Figure 2.24: A Java program with three command line parameters

�

We will encounter arrays in many of our later programs and the exercises contain plenty of

additional examples to gather more experience using arrays.

Higher-Dimensional Arrays

Java can create higher-dimensional arrays by considering them as "arrays of arrays". The most

common type of higher a dimensional array is a two-dimensional array.20

20
 Java can handle arrays of higher dimensions (arrays of arrays of arrays …). We will focus on two-dimensional

arrays only and leave three-dimensional arrays as an exercise.

Java by Definition Chapter 2: Basic Programming Page 30

Bert G. Wachsmuth Version 1.0, August 2000

Two-Dimensional Arrays

A two-dimensional array is an array where each element in turn is an array. Two-dimensional

arrays can be represented as a table, where the size of the first array determines the number of

rows and the size of the elements of the first array, which in turn are arrays, determines the

number of columns
21

. Two-dimensional arrays in Java are declared and initialized using:

• to declare: type tableName[][];

• to initialize: tableName = new type[numRows][numCols]

• to declare and initialize: type tableName[][] = new type[numRows][numCols];

Row and column indices start at 0 and go up to numRows-1 and numCols-1, respectively. Two-

dimensional arrays can be declared and initialized implicitly by providing a comma-separated

list of values in curly brackets internally grouped according to the number of rows and columns:

 type tableName[][] = {{val1,val2,...,valN},...,{val1,val2,...,valM}};

Two-dimensional arrays can be imagined as tables, while in mathematics a two-dimensional array is

frequently called a matrix (which should be familiar from linear algebra).

Class5ame

main(String args[])

int A[][] = new int[3][4];

A[0][1] A[0][2] A[0][3]A[0][0]

A[1][1] A[1][2] A[1][3]A[1][0]

A[2][1] A[2][2] A[2][3]A[2][0]

Figure 2.25: Declaring and initializing a two-dimensional array with 3 rows and 4 columns

Example 2.17: Working with two-dimensional arrays

Define a two-dimensional array (or matrix) with 4 rows and 4 columns of double, then

create methods to display the array, to find the sum of any given row, of any given

column, of the main diagonal, of the minor diagonal, and the largest number in the array.

Problem Analysis: Let's look at a two-dimensional array, or matrix, of size 4 by 4 to see if we can

determine by example what we are supposed to do. The notation a1,2 denotes an element in row 1,

column 2 (row and column indices start at 0, so row 1 refers to the 2nd row, column 2 to the 3rd

column):

21
 As we will see in example 9, two-dimensional arrays do not have to be rectangular, the number of columns could

be different in different rows. To declare and initialize non-rectangular two-dimensional arrays use type

arrayName[][] = new type[numRows][] and for each row use arrayName[row] = new type[numColsForRow].

Java by Definition Chapter 2: Basic Programming Page 31

Bert G. Wachsmuth Version 1.0, August 2000

Column 2

Row 1

a 0,3a 0,2a 0,1
a 0,0

a 1,3a 1,2a 1,1
a 1,0

a 2,3a 2,2a 2,1
a 2,0

a 3,3a 3,2a 3,1
a 3,0

Figure 2.26(a): Matrix rows and columns

Minor
Diagonal

(Major)
Diagonal

a 0,3a 0,2a 0,1
a 0,0

a 1,3a 1,2a 1,1
a 1,0

a 2,3a 2,2a 2,1
a 2,0

a 3,3a 3,2a 3,1
a 3,0

Figure 2.26(b): Matrix diagonals

Examples of row/column/diagonal summations:

• sum of row 1: 3,12,11,10,1 aaaa +++

• sum of column 2: 2,32,22,12,0 aaaa +++

• sum of diagonal: 3,32,21,10,0 aaaa +++

• sum of minor diagonal: 0,31,22,13,0 aaaa +++

Program Implementation: In Java, this two-dimension matrix is created using:

double A[][] = new double[4][4];

where the elements in A are automatically set to zero. Once we realize the patterns for finding the

various sums, it is easy to come up with appropriate methods for finding the sums of rows, columns,

and main diagonal:

public static double sumOfRow(double matrix[][], int row)
{ double sum = 0.0;
 for (int col = 0; col < matrix[0].length; col++)
 sum += matrix[row][col];
 return sum;
}
public static double sumOfCol(double matrix[][], int col)
{ double sum = 0;
 for (int row = 0; row < matrix.length; row++)
 sum += matrix[row][col];
 return sum;
}
public static double sumOfDiagonal(double matrix[][])
{ double sum = 0.0;
 for (int diag = 0; diag < matrix.length; diag++)
 sum += matrix[diag][diag];
 return sum;
}

The method sumOfDiagonal only needs the matrix as input because there is only one diagonal to

sum up. To find the sum of the minor diagonal, i.e. the diagonal entries from the upper right to the

lower left, we need one for loop so that inside the loop the row index goes up while the column index

goes down:

public static double sumOfMinorDiagonal(double matrix[][])
{ double sum = 0.0;
 for (int i = 0; i < matrix.length; i++)
 sum += matrix[i][matrix.length-i-1];
 return sum;
}

Java by Definition Chapter 2: Basic Programming Page 32

Bert G. Wachsmuth Version 1.0, August 2000

Next, we need to find the largest value in a matrix. We need a double for loop: one loop to go

through the rows and another one to go, for each fixed row, through each column. As we investigate

each element, we compare it with what we previously found to be the largest value. If we find a

larger one in the matrix, we use that as our new maximum:

public static double findMax(double matrix[][])
{ double max = matrix[0][0];
 for (int row = 0; row < matrix.length; row++)
 { for (int col = 0; col < matrix[row].length; col++)
 { if (matrix[row][col] > max)
 max = matrix[row][col];
 }22
 }
 return max;
}

The call to matrix[row].length will return the size of the array in row row, or in table-terminology

the number of columns in that row. Since all rows have the same number of columns we could have

used matrix[0].length for all rows.

Software Engineering Tip: Use either named constants or other derived constants to define

and manipulate 2-dimensional arrays. In particular, make use of the correct number of rows and

of elements in each row by using A[].length and A[row].length, respectively, where A is a two-

dimensional array and row an integer specifying a particular row. This code will automatically

adjust to the particular size of a two-dimensional array even if it is not rectangular.

Finally, we need the code to display a matrix. We have already seen that System.out.println works

for arrays (or for any other type), but it prints out the memory address not the array elements.

Therefore, just as for one-dimensional arrays, we need to create our own output method for matrices.

The first attempt goes through the matrix in a double for loop and displays each element:

public static void showMatrix(double matrix[][])
{ for (int row = 0; row < matrix.length; row++)
 for (int col = 0; col < matrix[row].length; col++)
 System.out.println(matrix[row][col]);
}

This displays the entire matrix, but it puts each element in a single line. That's not what we want. If

we replace System.out.println with System.out.print, all elements will appear in one line with no

spacing between them. That's also not what we want. We need to insert tab characters between the

elements of one row and a linefeed after each row so that the matrix will resemble a table:

public static void showMatrix(double matrix[][])
{ for (int row = 0; row < matrix.length; row++)
 { for (int col = 0; col < matrix[row].length; col++)
 System.out.print(matrix[row][col] + "\t");
 System.out.print("\n");
 }
 System.out.print("\n");
}

�

22
 The grouping brackets for the for loops are not necessary in this case but are included here for clarity.

Java by Definition Chapter 2: Basic Programming Page 33

Bert G. Wachsmuth Version 1.0, August 2000

Example 2.18: Two-dimensional array representing a table of sales figures

Create a table representing sales figures for a large company. The rows of the table

should correspond to the regions North and South, and the columns should represent the

categories Toys, Clothing, and Educational. Fill the table with random numbers, display

the table, and compute the total sales for the regions and categories.

Problem Analysis: We need to generate a two-dimensional array with 2 rows and 3 columns, where

the rows correspond to sales in one of the two regions and the columns to one of the three categories.

We then need to display that two-dimensional array and compute the sum of the rows corresponding

to the regions, and the sum of the columns corresponding to the categories.

Program Implementation: We can use the methods sumOfRow and sumOfCol as defined in example

2.17 without change, as well as the method showMatrix with a few minor changes. We use fields of

type array of String as labels for the regions and category. The main method declares and initializes

our table, which is then used as input to the various methods.

public class SalesSummary
{ final static String[] CATEGORIES = {"Toys", "Clothes", "Educational"};
 final static String[] REGIONS = {"North", "South"};

 public static double sumOfRow(double matrix[][], int row)
 { /* as in example 2.17, no changes */ }
 public static double sumOfCol(double matrix[][], int col)
 { /* as in example 2.17, no changes */ }
 public static void showMatrix(double matrix[][])
 { System.out.print("\t");
 for (int i = 0; i < CATEGORIES.length; i++)
 System.out.print(CATEGORIES[i] + "\t");
 System.out.println();
 for (int row = 0; row < matrix.length; row++)
 { System.out.print(REGIONS[row] + ":\t");
 for (int col = 0; col < matrix[row].length; col++)
 System.out.print(matrix[row][col] + "\t");
 System.out.print("\n");
 }
 System.out.print("\n");
 }
 public static void main(String args[])
 { double table[][] = new double[REGIONS.length][CATEGORIES.length];
 for (int row = 0; row < table.length; row++)
 for (int col = 0; col < table[row].length; col++)
 table[row][col] = 1000*Math.random();

 showMatrix(table);
 for (int region = 0; region < REGIONS.length; region++)
 System.out.println("Sales in " + REGIONS[region] + ": " +
 sumOfRow(table, region));

 for (int cat = 0; cat < CATEGORIES.length; cat++)
 System.out.println("Sales in " + CATEGORIES[cat] + ": " +
 sumOfCol(table, cat));
 }
}

We made some minor changes to showMatrix in order to display the row and column headers

appropriately. Figure 2.27 shows the results of running this program:

Java by Definition Chapter 2: Basic Programming Page 34

Bert G. Wachsmuth Version 1.0, August 2000

Figure 2.27: Executing the SalesSummary program

�

Two-dimensional arrays do not necessarily have to be rectangular, the number of row elements can

be different from one row to the next.

Example 2.19: Triangular array for prefix sales averages

Let's assume we have bimonthly sales figures in millions of dollars for a corporation. We

want to generate a (prefix) sales report, listing in each row the total and average sales up

to that month and the individual sales figures for those months. Generate that report,

using a two-dimensional triangular array for the bimonthly data, and another array for

the sum and average figures.

Problem Analysis: Suppose the sales figures for Feb, Apr, and May are 30, 20, and 40, respectively.

We want our program to generate a report that looks similar to table 2.28:

 Sum Avg Feb Apr May

Feb 30 30 30

Apr 50 25 30 20

May 90 30 30 20 40

Table 2.28: Example sales report with prefix averages

There are at least three distinct tasks involved:

• generate the triangular array for sales data per month

• compute the sums and totals based on that triangular array

• display the final report

Program Implementation: Of course that means we will use three methods. To make our program

flexible, we first define a field MONTHS of type array of strings that specifies the valid months for our

sales data. We then create the method to generate the triangular table. Assuming salesFigures is a

one-dimensional int array containing our sales figures, the method takes as input the salesFigures

array and produces as output a triangular table of sales data (see figure 2.30). The table has as many

rows as there are months, but each row has a different number of columns. We will declare the table

as:

int table[][] = new int[MONTHS.length][];

specifying only the number of rows. We generate the number of columns in a for loop, then use

another for loop to fill the table with the proper numbers from salesFigures:

public static int[][] generateTable(int salesFigures[])
{ int table[][] = new int[MONTHS.length][];
 for (int row = 0; row < salesFigures.length; row++)

Java by Definition Chapter 2: Basic Programming Page 35

Bert G. Wachsmuth Version 1.0, August 2000

 table[row] = new int[row+1];

 for (int row = 0; row < table.length; row++)
 for (int col = 0; col < table[row].length; col++)
 table[row][col] = salesFigures[col];
 return table;
}

1,1

a 3a 2a 1
a 0

table t: t0,0row 0:

tt1,0row 1:

t2,2t2,1t2,0row 2:

t3,3t3,2t3,1t3,0row 3:

salesFigures a:

Figure 2.29: Converting a one-dimensional array into a triangular matrix

The second method to compute the summary for our data takes as input the table produced by

generateTable and computes the totals and averages per row. It returns a two-dimensional array

where the first column contains totals and the second the averages per row. Again a double for loop

will do the trick:

public static int[][] computeSummary(int table[][])
{ int summary[][] = new int[MONTHS.length][2];
 for (int row = 0; row < table.length; row++)
 { summary[row][0] = 0;
 for (int col = 0; col < table[row].length; col++)
 summary[row][0] += table[row][col];
 summary[row][1] = summary[row][0] / table[row].length;
 }
 return summary;
}

The last method takes as input the table created by generateTable and the summary from

computeSummary to produce the desired report. It first creates a header row for the report, consisting

of the strings "Sum", "Avg", and the months in the MONTHS array. Next we display the data for each

row: first we print the month again, then the total and the average, and finally the data from the

table in a for loop. We will add a vertical line symbol "|" at the appropriate places to make the table

more readable.

public static void showReport(int table[][], int summary[][])
{ System.out.print(" \t| Sum\tAverage\t| ");
 for (int i = 0; i < MONTHS.length; i++)
 System.out.print(MONTHS[i] + "\t");
 System.out.println();
 for (int row = 0; row < table.length; row++)
 { System.out.print(MONTHS[row] + "\t| ");
 System.out.print(summary[row][0]+"\t"+summary[row][1]+"\t| ");
 for (int col = 0; col < table[row].length; col++)
 System.out.print(table[row][col] + "\t");
 System.out.println();
 }
}

Java by Definition Chapter 2: Basic Programming Page 36

Bert G. Wachsmuth Version 1.0, August 2000

With these methods doing all the work, the job of the main method is easy. It generates some random

sales data and calls on the above methods in the proper order to compute everything and display the

report:

public class SalesFigures
{ static String MONTHS[] = {"Feb", "Apr", "Jun", "Aug", "Oct", "Dec"};

 public static int[][] generateTable(int salesFigures[])
 { /* code as above */ }
 public static int[][] computeSummary(int table[][])
 { /* code as above */ }
 public static void showReport(int table[][], int summary[][])
 { /* code as above */ }
 public static void main(String args[])
 { int salesFigures[] = new int[MONTHS.length];
 for (int i = 0; i < salesFigures.length; i++)
 salesFigures[i] = (int)(100 * Math.random());

 int table[][] = generateTable(salesFigures);
 int summary[][] = computeSummary(table);
 showReport(table, summary);
 }
}

This program produces a report comparable to table 2.28 where you can see which months' sales

figures were better or worse than average together with the actual numbers per period.

Figure 2.30: SalesReport output

The averages up to Feb. and Jun., for example, are lower than the rest because the (random) sales

figures for those months were disappointing.

�

We will revisit two-dimensional arrays in the last section of this chapter where we present a

program that can solve linear equations by matrix manipulations. The next section introduces

guidelines for adding comments and documentation to your code and for testing and debugging

programs.

2.4. Documenting, Testing, and Keyboard Input

It is important in every programming language to document and test your code appropriately. In

object-oriented languages such as Java, good documentation and testing plays an even more

important role. Java allows you to easily create objects that can be reused without modification in

any number of programs. Unless the capabilities and shortcomings of those objects are well

documented and tested, they are (almost) useless.

Java by Definition Chapter 2: Basic Programming Page 37

Bert G. Wachsmuth Version 1.0, August 2000

To help document your code the JDK provides not only the capabilities of inserting comments into

your source code – called implementation comments – but also a tool called javadoc to automatically

generate complete, formatted documentation for your programs and objects that is indexed and

cross-referenced. This documentation is stored in HTML format so that it can be viewed with any

web browser and it does not contain your actual source code.

Implementation and Documentation Comments

Implementation Comments

You can embed two types of implementation comments in your source code to document

complicated sections:

• A comment that applies from the starting point to the end of line is used to insert brief

comments about your code. Such a comment is started by the double-slash symbols //

• Comments that apply from a given starting point to a particular endpoint are used to insert

larger notes about your code. Such comments start where you put the slash-star symbols

/* and end where you put the star-slash symbols */

The compiler ignores both types of comments and they do not increase the size of the class file.

Example 2.20: Proper and improper use of comments

Look at the code below and identify the comments. Then decide which comments are not

necessary because the code is clear, and which comments indicate that the corresponding

code should be rewritten.

/*
 This code finds the length of the hypotenuse of a right
 triangle
 */
double x = 10.0; // x stands for the base;
double y = 20.0; // y stands for the height;
/*
 Now computing the length by taking the square root of the
 sum of x*x and y*y
 */
double z = Math.sqrt(x*x + y*y);

The first comment introduces the code. It is always a good idea to start longer segments of code with

a brief introductory comment explaining what is about to happen. Next, two variables x and y are

declared. Since their names are non-descript, comments are used to clarify their meaning. That, of

course, is a bad idea. Instead of using comments we should choose more appropriate names for the

variables, such as base and height. Finally, another comment describes the computation that

follows. That comment is redundant. It describes exactly what the code says and there's no need to

restate the obvious. The same code, properly written, could look as follows:

/*
 * This code finds the length of the hypotenuse of a right
 * triangle given the base and height

Java by Definition Chapter 2: Basic Programming Page 38

Bert G. Wachsmuth Version 1.0, August 2000

 */
double base = 10;
double height = 20;
double hypotenuse = Math.sqrt(base*base + height*height);

�

While comments are certainly useful, much of your code should be as clear and self-evident as

possible. You should not use comments to clarify code when you could instead write clearer code.

Writing the best and most readable code should always be your first goal.

Software Engineering Tip: Do not substitute comments over clear programming code. To

ensure that your source code is as clear as possible, follow these guidelines:

• Use names for variables and fields that clearly signify the meaning of the stored data.

• Break up large tasks into small subtasks using methods so each subtask accomplishes a well-

defined, small piece of the entire task.

• Name all methods so that their names clearly indicate what they accomplish.

• Try to name variables, fields, and methods so that they produce "English-like" sentences

when used according to the Java language rules.

Occasionally it may be difficult to decide on an appropriate name for a method. That often means

your method tries to accomplish too much and you should try to break it up into more subtasks until

their meaning – and therefore their names – become clear.

Example 2.21: Proper use of comments

Take a look at the code below, which reverses a String, removes any leading pound

symbols #, and converts the string to uppercase letters. Are the comments clear? Is there

anything you would change? If so, change it.

/*
 This method reverses the input string, removes any leading
 pound symbols, and converts all characters to their uppercase
 version, then returns the new, converted string.
 */
public static String changeString(String s)
{ // First, reversing the string
 String changedS = "";
 for (int i = s.length() - 1; i >= 0; i--)
 changedS += s.charAt(i);

 // Next, removing any leading pound signs
 while ((changedS.length() > 0) && (changedS.charAt(0) == '#'))
 changedS = changedS.substring(1, changedS.length());

 // Finally, converting to upper-case characters
 changedS = changedS.toUpperCase();

 // and returning the converted String
 return changedS;
}

While this method does work and has proper comments explaining what it is doing, the name of the

method changeString is too vague. That is in fact the reason why the introductory comment is

necessary. Further comments were used to explain various subsections of the code. This is not at all

good programming style. For example, try to figure out, from the comments alone, what this method

Java by Definition Chapter 2: Basic Programming Page 39

Bert G. Wachsmuth Version 1.0, August 2000

will do to the string "# Otto". Looking at the comments only one might be tempted to say that the

method returns the string "OTTO" (leading # removed, reversed, and capitalized). However, the

method instead returns "OTTO #" because first it reverses the string, and then it removes leading #

symbols.

Instead of the above method with comments, the following code without comments is clearer and

more flexible:

public static String reverseString(String s)
{ String reverseS = "";
 for (int i = s.length() - 1; i >= 0; i--)
 reverseS += s.charAt(i);
 return reverseS;
}
public static String removeLeadingChars(String s, char removeThis)
{ while ((s.length() > 0) && (s.charAt(0) == removeThis))
 s = s.substring(1, s.length());
 return s;
}

We have broken up the original method into two methods whose names are descriptive enough that

we do not need comments. In addition, we managed to enhance the method to remove the leading #

symbols so that it can remove any leading character. We did not create code for converting the string

to uppercase characters because a String already has that capability built-in as one of its methods.

To convert, say, "# Otto" we would use our methods as follows:

String s = "# Otto";
String convert = removeLeadingChars(s, '#');
convert = reverseString(convert);
convert = convert.toUpperCase();

or, if we wanted to, we could combine the last three statements into one:

String s = "# Otto";
String convert = reverseString(removeLeadingChars(s,'#')).toUpperCase();

which again raises the question as to which code is more readable (left up to you this time).

�

Java also supports comments called documentation comments, which can be used by the JDK tool

javadoc to automatically generate HTML documentation for your classes23.

Documentation Comments

Java allows you to add documentation comments to your source code that can be extracted and

formatted by the javadoc utility program that is part of the JDK package. This utility program

will extract specifically tagged comment lines from your source code, process, format, index,

cross-link them, and produce a sequence of linked HTML documents. Follow these rules to insert

documentation comments:

• documentation comments begin with the slash-star-star symbols /** and end with the

star-slash symbols */

23
 If you are creating classes that can be reused in many situations, you really should use documentation comments

to let javadoc create professional documentation for you.

Java by Definition Chapter 2: Basic Programming Page 40

Bert G. Wachsmuth Version 1.0, August 2000

• documentation comments can include HTML formatting directives (except headline tags)

• documentation comments must appear directly before the class name, field, or method they

refer to

• documentation comments can contain special directives standing in a line by themselves:

 @author Name to indicate the author of the code

 @version Number/Date to indicate the version and perhaps date of the code

 @see class#references for links to other documentation comments

• documentation comments referring to a method can include

the directives:

 @return rType to indicate the return type of the method

 @exception exType to indicate any exception this method throws

Example 2.22: Using javadoc comments

We have already created the methods reverseString and removeLeadingChars. Use

javadoc comments to document a program that includes these methods.

Since we have already created these methods, here is the code embedding them into a complete

program with javadoc comments:

/** This is a test program to test the methods <code>reverseString</code>
 and <code>removeLeadingChars</code>.

 @author Bert G. Wachsmuth
 @version 98/03/10
*/
public class StringAndComments
{ /** This method reverses the input string, i.e. the input string is
 returned character by character in reverse order.

 @return String
 */
 public static String reverseString(String s)
 { /* code as before */ }

 /** This method removes all leading characters from the input
 string s. The character to be removed is determined by
 the input parameter <code>removeThis</code>

 @return String
 */
 public static String removeLeadingChars(String s, char removeThis)
 { /* code as before */ }

 /** The main method tests <code>removeLeadingChars</code> and
 <code>reverseString</code> to see if they work correctly.

 @see StringAndComments#removeLeadingChars(String, char)
 @see StringAndComments#reverseString(String)
 */
 public static void main(String args[])
 { String s = "# Otto";
 String uncommented = removeLeadingChars(s,'#');
 String upper = reverseString(uncommented).toUpperCase();
 if (s.toUpperCase().equals(upper))
 System.out.println("String is a palindrome");
 }
}

Java by Definition Chapter 2: Basic Programming Page 41

Bert G. Wachsmuth Version 1.0, August 2000

The first javadoc comment describes the overall purpose of the class or program. The comment

includes the HTML tags <code> and </code> to properly format code segments, the name of the

author, and the version or date of the code.

Then the two methods each have a javadoc comment, describing briefly what they do (but not how

they accomplish it). In particular, each method returns a String as indicated by the @return tag.

Finally, the main method is described. Its only purpose is to test the previous methods, so a reference

is made to them via the appropriate @see tags. The keyword after the @see tag is the current class

name, followed by a pound sign #, followed by the name of the methods with their input types but

without variable names.

�

Software Engineering Tip: A proper program or class should always include comments. At the

very least:

• Use javadoc comments to give a brief description of the overall purpose of the class. The first

sentence in that description will be used for a class summary and should adequately and

concisely describe the class.

• Include the name of the author via the @author tag

• Include the date or version of the code via the @version tag.

• Use javadoc comments to give a brief description of all methods in a class. Specify the

meaning of all input parameters and what the methods return. If a method has particular

requirements on its input parameters, specify them as well.

Much of the code listed in this textbook does not include comments because the code is discussed in

detail. Your own code, on the other hand, should religiously follow the above guidelines.

Something else needs to be done to produce the final HTML documentation or we could have used

source code comments instead of javadoc comments.

The javadoc Tool

The javadoc tool is a program that is part of the JDK. It is used to analyze and extract

documentation comments from Java source documents. It produces a well-formatted, cross-

linked, and indexed documentation in HTML format. To use the javadoc tool, type from the

command line (similar to invoking the Java compiler) the line

 javadoc [options] SourceCodeFile.java

where wildcard characters are allowed for the file name. Some of the useful options include:

 -private show all classes and members

 -version include @version tags (omitted by default)

 -author include @author tags (omitted by default)

Java by Definition Chapter 2: Basic Programming Page 42

Bert G. Wachsmuth Version 1.0, August 2000

The javadoc tool produces by default one HTML file per Java source file as well as a class

hierarchy file overview-tree.html and an index file index.html.
24

Example 2.23: Using the javadoc tool

In example 2.22 we created a program including javadoc comments to test some string

conversion methods. Use the javadoc tool to produce the documentation in HTML

format. Then use a web browser to view the HTML document(s) generated by javadoc.

In example 2.22 we listed the source code, which should be saved as StringAndComments.java. To

generate the HTML documentation, we could type, at the command prompt:

javadoc StringAndComments.java

To include the author and version information we add the options –version and –author:

javadoc –author –version StringAndComments.java

Several files will be created, including StringsAndComments.html, which is shown in figure 2.3125:

Figure 2.31: Web browser showing HTML documentation created by javadoc

�

Of course, javadoc can only produce the HTML text according to your comments. If you include

carefully phrased javadoc comments in your source code, the javadoc tool can quickly and efficiently

generate nice, concise, and useful documentation of your code without much work.

24
 The names of the files produced by javadoc vary depending on the version of javadoc. There will be at least one

file name ClassFile.html per class containing documentation comments.
25
 In the alphabetical list of methods the sentence describing reverseString is cut-off after the "i.e.", because

javadoc (incorrectly) interprets period + space as the end of the sentence, and only the first sentence is used for

the summary. The full text of our javadoc comments appears later in the HTML document.

Java by Definition Chapter 2: Basic Programming Page 43

Bert G. Wachsmuth Version 1.0, August 2000

The Console Class for Keyboard Input

Here is an example of a class that extends Java's capabilities to read input from the keyboard. The

actual code may be difficult to understand, but you should be able to look at the HTML document

produced by javadoc and be able to use the class even though you may not understand how the code

works.

Example 2.24: The Console class for simplified user input

The following source code for a Java class simplifies user input26. It is not important that

you understand the code that makes up this class, or even what a class is. Instead, run

the javadoc utility program on the source code and look at the resulting HTML file(s).

Then create a small program using this class according to that documentation.

import java.io.*;
/** The Console class provides methods that allow easy reading of the basic
 data types <TT>double</TT>, <TT>int</TT>, and <TT>String</TT> from standard input.
 <I>Must be placed in the same directory as the source code using it.</I><P>

 Usage Example:
 <PRE>
 System.out.println("Enter a double number: ");
 double x = Console.readDouble();
 System.out.println("You have entered: " + x);
 </PRE>

 @author Bert G. Wachsmuth
 @version 98/03/10
*/
public class Console
{ /** Reads a single double from the keyboard. Stops execution in case of error.
 @return double */
 public static double readDouble()
 { try
 { return Double.valueOf(readString().trim()).doubleValue(); }
 catch(NumberFormatException ne)
 { System.err.println("Console.readDouble: Not a double...");
 System.exit(-1);
 return 0.0;
 }
 }
 /** Reads a single int from the keyboard. Stops execution in case of error.
 @return int */
 public static int readInt()
 { try
 { return Integer.valueOf(readString().trim()).intValue(); }
 catch(NumberFormatException ne)
 { System.err.println("Console.readInt: Not an integer...");
 System.exit(-1);
 return -1;
 }
 }
 /** Reads a String from the keyboard until RETURN or ENTER key is pressed.
 @return String */
 public static String readString()
 { String string = new String();

26
 Java has, unfortunately, poor support for reading the basic data types from the keyboard in non-GUI (non-

graphical) programs. This class provides some help and will be used in many future examples and exercises.

Java by Definition Chapter 2: Basic Programming Page 44

Bert G. Wachsmuth Version 1.0, August 2000

 BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
 try
 { string = in.readLine(); }
 catch(IOException e)
 { System.out.println("Console.readString: Unknown error...");
 System.exit(-1);
 }
 return string;
 }
}

If you type this file exactly as shown and save it as Console.java, you can process it with javadoc to

generate documentation similar to the following27:

Figure 2.32: javadoc documentation for Console class

Based on this documentation we can use this extension of Java's capabilities as follows:

public class ConsoleTest
{ public static void main(String args[])
 { System.out.print("Enter integer: ");
 int i = Console.readInt();
 System.out.print("Enter double: ");
 double x = Console.readDouble();
 System.out.println("Integer entered: " + i);
 System.out.println("Double entered: " + x);
 }
}

This example will compile as long as the file Console.java has been typed exactly as shown above

and was saved in the same directory as ConsoleTest.java. Figure 2.33 shows the output of this class

when executed twice, once entering the correct type and then entering a double instead of an int.

Figure2.33: Valid and invalid use of Console class methods

27
 To conserve space, only the important elements of the formatted Console.html document are shown here.

Java by Definition Chapter 2: Basic Programming Page 45

Bert G. Wachsmuth Version 1.0, August 2000

�

This class and its method can be used in every program. It is a rather simplistic way of obtaining

user input28, but it will suffice until we introduce various graphic user interface elements in chapter

4 that allow for more convenient user interaction.

Example 2.25: Computing Exam Average and Standard Deviation

Create a simple grade-book program to help teachers evaluate the performance of their students.

The program should store grades in an array of double and compute their average and standard

deviation. The grades should be entered using the Console class.

Problem Analysis: We need to know the formulas for the average and standard deviation.

• The average is the sum of all numbers, divided by the number of numbers. If x is an

array of size N, the formula for the average M is:

M = (x[0] + x[1] + … + x[N-1]) / N

• The standard deviation S is the square root of the variance V. The variance measures how

far the grades deviate from the average. If x is an array of size N with average M, the

formulas for the variance V and standard deviation S are:

V = ((x[0] – M)^2 + (x[1] – M)^2 + … + (x[N-1] – M)^2)/(N-1S = Math.sqrt(V);

We can divide our program into 4 tasks:

• Obtain the grades from the user and store them in an array

• Compute the average

• Compute the variance (from which it is easy to compute the standard deviation)

• Display the results

Program Implementation: We clearly need 4 methods:

• getGrades uses as input the number of grades to obtain, asks the user to enter each

grade, and returns an array of double.

• findAverage uses the grade array as input and returns the average

• findVariance uses the grade array and the average as input and returns the variance

• showResults uses the average and variance as input and displays the results

Here is the implementation of these methods:

public static double[] getGrades(int N)
{ double grades[] = new double[N];
 for (int i = 0; i < grades.length; i++)
 { System.out.print("Enter grade " + (i+1) + ": ");
 grades[i] = Console.readDouble();
 }
 return grades;
}

28
 In chapter five we will describe Java's general "try-catch" mechanism for controlling errors. We could then

improve the Console class to handle errors more conveniently. The current version simply stops a program as soon

as an input error occurs, which is certainly not what a good program should do.

Java by Definition Chapter 2: Basic Programming Page 46

Bert G. Wachsmuth Version 1.0, August 2000

public static double findAverage(double grades[])
{ double sum = 0.0;
 for (int i = 0; i < grades.length; i++)
 sum += grades[i];
 return sum / grades.length;
}
public static double findVariance(double grades[], double average)
{ double sum = 0.0;
 for (int i = 0; i < grades.length; i++)
 sum += (grades[i] – average)*(grades[i] – average);
 return sum / (grades.length – 1);
}
public static void showResults(double average, double variance)
{ System.out.println("The average is: " + average);
 System.out.println("The variance is: " + variance);
 System.out.println("Standard deviation: " + Math.sqrt(variance));
}

With these functions the standard main method could look as follows:

public static void main(String args[])
{ System.out.print("How many grades do you want to enter: ");
 int numGrades = Console.readInt();
 double grades[] = getGrades(numGrades);
 double average = findAverage(grades);
 double variance = findVariance(grades, average);
 showResults(average, variance);
}

Figure 2.34 shows a sample run of a program containing these methods:

Figure 2.34: Computing average and standard deviation of an array

�

Testing and Debugging Code

Testing your code is of course essential to create good programs and methods. A program that

compiles without errors does not mean that it works correctly, and a program that works correctly in

a few cases does not mean that it will work correctly in every case. A program that works correctly

must contain instructions for how to use it, and a program that does not work as advertised is

useless, no matter how nicely it is documented.

Error Types

In any programming language errors in source code can be classified into four types:

Java by Definition Chapter 2: Basic Programming Page 47

Bert G. Wachsmuth Version 1.0, August 2000

• Syntactical errors: code that is not written according to the rules of the Java language

• Grammatical errors: code that uses unknown language elements

• Runtime errors: code that produces an error while executing

• Logical errors: code that does not produce the results it was meant to produce

The compiler can detect syntactical and grammatical errors, while runtime and logical errors

must be detected by thorough testing and program analysis.

No matter how carefully you create a method or program, it is highly likely that it initially contains

one or more errors. Few programmers can create a correct method or program on their first try. In

our next example we will see several tricks that can be used to develop a method or program from a

"first try" to a final and documented version.

Example 2.26: Error types and debugging tips

Below is a method to replace all occurrences of the string old in string s with the string

with but it contains mistakes. Classify and fix the mistakes to produce a working and

properly documented version of this method.

1 public class TestAndDebug
2 { public static String replace(String s, String old, String with)
3 { String newString = "";
4 String remainder = s;
5 if (remainder.indexof(old) > 0)
6 { int start = remainder.indexof(old);
7 int end = start + old.length + 1;
8 newString = remainder.subString(0, start) + with;
9 remainder = remainder.subString(end, remainder.length);
10 }
11 return newString + remainder;
12 }
13 }

Step 1: We determine by example how the method is trying to accomplish its goal without worrying

about details or errors. If the input values are s = "reclining", old = "clin", and with =

"member", the method seems to work as follows:

• In line 3 and 4 variables are initialized: newString = "" and remainder = "reclining"

• Line 5 checks if old is part of remainder, i.e. if "clin" is contained in "reclining"

• If so, line 6 sets start to the starting index of old inside remainder and line 7 sets end

to one more than the ending index of old inside remainder

• Line 8 resets newString to the concatenation of the part of remainder up to old and with

so that it should have the value of "re" + "member"

• Line 9 resets remainder to the part of remainder after old so that it should have the

value of "ing"

• Line 11 returns newString + remainder, i.e. "remember" + "ing"

Step 2: We use the compiler to determine any syntactical and grammatical errors in the code29:

29
 If the method was not part of a class we can embed it in a simple test class so that we can compile it.

Java by Definition Chapter 2: Basic Programming Page 48

Bert G. Wachsmuth Version 1.0, August 2000

Figure 2.35: Error messages when compiling TestAndDebug

The compiler finds the following errors:

• Line 5 and 6: method indexof is misspelled. It should be indexOf (grammar error)

• Line 7 and 9: length is used without parenthesis. It should be length() (syntax error)

• Line 8 (and 9): method subString is misspelled. It should be substring (grammar error)

Here is the new version of our method with all syntactical and grammatical mistakes fixed. It will

compile without errors (which does not mean that our method will work correctly):

public static String replace(String s, String old, String with)
{ String newString = "";
 String remainder = s;
 if (remainder.indexOf(old) > 0)
 { int start = remainder.indexOf(old);
 int end = start + old.length() + 1;
 newString = remainder.substring(0, start) + with;
 remainder = remainder.substring(end, remainder.length());
 }
 return newString + remainder;
}

Step 3: We execute our method in a few test cases to see if it produces the desired results. To do that

we add a standard main method to our class, which calls replace as follows:

public static void main(String args[])
{ System.out.println("Test: " + replace("reclining","clin","member"));
 System.out.println("Front: " + replace("reclining","r","R"));
 System.out.println("End: " + replace("reclining","ing","er"));
}

The results of executing this class are shown in figure 2.36:

Figure 2.36: Runtime error message when executing TestAndDebug

• The first test results in the string "rememberng" instead of "remembering" (logical mistake).

Java by Definition Chapter 2: Basic Programming Page 49

Bert G. Wachsmuth Version 1.0, August 2000

• The second test does not change the string at all (logical mistake).

• The third test results in an StringIndexOutOfBoundsException (runtime error).

To find logical or runtime errors the compiler can not help us directly but:

• we can insert System.out.println statements to look inside the method as it executes

• we can temporarily comment out some code to zoom in on the code we want to analyze.

We do not indent our temporary System.out.println statements so that we can easily remove them

later:

public class TestAndDebug
{ public static String replace(String s, String old, String with)
 { String newString = "";
 String remainder = s;
System.out.println("s = " + s + ", old = " + old + ", with = " + with);

 if (remainder.indexOf(old) > 0)
 { int start = remainder.indexOf(old);
 int end = start + old.length() + 1;
System.out.println("1st: " + remainder.substring(0, start));
System.out.println("3rd: " + remainder.substring(end, remainder.length()));

 newString = remainder.substring(0, start) + with;
 remainder = remainder.substring(end, remainder.length());
 }
 return newString + remainder;
 }
 public static void main(String args[])
 { System.out.println("Test: " +replace("reclining","clin","member"));
 System.out.println("Front: " +replace("reclining","r","R"));
// System.out.println("End: " +replace("reclining","ing","er"));
 }
}

Running the modified class we get additional information about the inner workings of replace:

Figure 2.37: Executing TestAndDebug containing temporary output statements

In the first test the 3rd part of the string is not correct. It should be "ing" instead of "ng", which

implies that the value of end is incorrect. The second test does not show the values of the 1st and 3rd

part because the test in the if statement returns false. We therefore make the following changes:

Old Line New Line
int end = start + old.length() + 1; int end = start + old.length();
if (remainder.indexOf(old) > 0) if (remainder.indexOf(old) >= 0)

The third test that resulted in a runtime error did not execute because we commented it out. Since

we changed our method we remove the comments and recompile and execute the class. Our replace

method now executes correctly in all three test.

Step 4: We need to ensure that we really tested all possible situations:

Java by Definition Chapter 2: Basic Programming Page 50

Bert G. Wachsmuth Version 1.0, August 2000

• Our method should replace all occurrences of a substring with another but we only tried to

replace one occurrence with another.

• What will our method do if the input strings with and old are empty strings?

Therefore, we will execute more tests, using the following main method:

public static void main(String args[])
{ System.out.println("No replace: " + replace("bake","coke", "pepsi"));
 System.out.println("Repeated: " + replace("Run Jane Run","Run","Go"));
 System.out.println("Replace with empty: " + replace("rerun","re",""));
 System.out.println("Replace empty: " + replace("run","","re"));
}

Running this program (see figure 2.38) will reveal two additional logical mistakes of our method:

Figure 2.38: Executing TestAndDebug with additional logical mistakes revealed

• The method performs only one replacement and does not change all occurrences of old.

• The method replaces an empty string even though that should not happen.

To perform repeated substitutions we change the if statement to a while statement. Each time a

replacement is made we want to append the result to newString, so we also change the line that

resets newString (see below). To avoid replacing the empty string we add a second test to the while

statement. Our final version of replace, which will pass all tests, is therefore:

public static String replace(String s, String old, String with)
{ String newString = "";
 String remainder = s;
 while ((remainder.indexOf(old) >= 0) && (!old.equals("")))

 { int start = remainder.indexOf(old);
 int end = start + old.length();
 newString += remainder.substring(0, start) + with;

 remainder = remainder.substring(end, remainder.length());
 }
 return newString + remainder;
}

Step 5: We add proper documentation comments to our working method:

/** Replaces all occurances of <code>old</code> in string <code>s</code>
 with the string <code>with</code>.

 @author Bert G. Wachsmuth
 @version 1.0 (12/99)
*/
public static String replace(String s, String old, String with)
{ /* as before */ }

�

Java by Definition Chapter 2: Basic Programming Page 51

Bert G. Wachsmuth Version 1.0, August 2000

Example 2.26 shows several tricks that can be used to create a working version of a method or

program. They can be summarized as follows:

Software Engineering Tip: Testing a method or program is important to make sure it works

correctly.

• Test your method in one or more simple cases and verify the answers

• Test your method in all extreme cases and verify the answers

• Test your method when the input values are not what your method usually expects

As tips to find and correct errors in your method or program:

• Step through a method or program manually, using pencil and paper

• Embed your method(s) in a class, if necessary, and compile it to find all syntactical and

grammatical errors. Use a main method to test all methods in your class.

• Use frequent System.out.println statements to display what happens during execution. Do

not indent these statements so you can quickly spot and remove them again.

• Use comments to temporarily "comment–out" section of your code, either multi-line

comments /* and */ for large sections or single-line comments // for one or two lines

• Use documentation comments to clearly state the purpose of your method and/or programs,

and describe any conditions for input parameters that must be met.

2.5. Wrapper Classes for Basic Data Types

We now have a good idea about the basic elements of the Java language, but we hardly touched on

the object-oriented principles that are at the heart of the language. We will examine those principles

in detail in the next chapter(s) but we have already seen an example of their usefulness: the String

and StringBuffer types, or more accurately, the String and StringBuffer classes. These types are

different from our basic types because every variable of type String or StringBuffer contains useful

operations in addition to data.

Unfortunately, the basic types double, int, char, and boolean do not have comparable operations.

Therefore Java includes special "wrapper" classes for the basic types that can store data and

"empower" them with operations that can be accessed via the dot operator. In this section we will

introduce some of these wrapper classes and list their most important operations to start

familiarizing ourselves with classes.30

Java includes wrapper classes to enhance the basic data types with appropriate operations:

• All wrapper classes have names related to a basic type name, starting with a capital letter.

• All wrapper classes define reference types.

• Wrapper classes can store and return the basic types.

• Wrapper classes contain useful methods that are accessed using the dot operator.

30
 After finishing chapter 3 you might want to come back to this section to understand the subtleties of these classes.

Java by Definition Chapter 2: Basic Programming Page 52

Bert G. Wachsmuth Version 1.0, August 2000

The Basic Wrapper Classes

Java includes basic wrapper classes called Character, Double, and Integer. Each class wraps

its basic type in an object, which stores the actual data and contains a variety of useful methods

for this data type. To declare and optionally initialize a variable of a wrapper class, use:

 WrapperClass varName [= new WrapperClass(basicType)];

where WrapperClass is either Character, Double, or Integer, and basicType is,

correspondingly, a char, double, or int expression. The methods of the wrapper classes can be

categorized into two groups:

• methods tied to a variable of a wrapper type – to access these, use:

 varName.methodName(parameterList);methods tied directly to the wrapper class
31

 – to

access these, use:

 WrapperClass.methodName(parameterList);

Tables 2.39, 2.40, and 2.41 show some of the methods available for the basic wrapper classes32.

Method Description

Methods bound to variables of type Character
char charValue() returns the char value of this Character object
boolean equals(Object obj) returns true if the input represents the same

character as the variable owning the operation
String toString() returns a String representing this character

Methods bound to the class Character
boolean isLowerCase(char ch) returns true if input is a lowercase character
boolean isUpperCase(char ch) returns true if input is an uppercase character
boolean isDigit(char ch) returns true if the input character is a digit
boolean isLetter(char ch) returns true if the input character is a letter
char toLowerCase(char ch) returns lowercase version of the input character
char toUpperCase(char ch) returns uppercase version of the input character

Table 2.39: Operations bound to Character variables and class

Example 2.27: Using Character operations

Create a method that takes as input a String and returns as output a String that

contains the same characters as the input String but with capitals and lowers reversed.

Obtain the input string from the user via the Console class described in section 2.4.

Problem Analysis: We will use the methods isLowerCase, isUpperCase, toLowerCase,

toUpperCase, and isLetter, all bound to the class Character. That means that we use the name of

the class instead of a variable name to access the methods33.

31
 In Chapter 3 we will see that methods bound to a class are static methods.

32
 The wrapper classes contain more methods than listed here, and there are additional wrapper classes not

mentioned. Consult the Java API documentation for details, looking for the java.lang package.
33
 Recall that we can use the operation length of a String variable to get its length, and charAt(i) to extract its i-

th character. Both methods are bound to String variables, not the String class.

Java by Definition Chapter 2: Basic Programming Page 53

Bert G. Wachsmuth Version 1.0, August 2000

1. We create a method switchCase that takes as input a String and returns the input string

with all characters converted to their opposite case.

2. The standard main method uses the readString method of the Console class to obtain an

input string from the user. The Console class must be located in the same directory as our

current class. The method switchCase will then convert the input string.

Step 1: The method switchCase loops through all characters of the input string, checks if they are

letters, and if so converts them to their opposite case. Then they are appended to a second string:

public static String switchCase(String s)
{ String newString = new String("");
 for (int i = 0; i < s.length(); i++)
 { char cc = s.charAt(i);
 if (Character.isLetter(cc))
 { if (Character.isUpperCase(cc))
 cc = Character.toLowerCase(cc);
 else if (Character.isLowerCase(cc))
 cc = Character.toUpperCase(cc);
 }
 newString += cc;
 }
 return newString;
}

Step 2: If the Console.java file is located in the same directory as the following program, we can

use readString as described in example 2.24, to finish our program:

public class ConvertString
{ public static String switchCase(String s)
 { /* as above */ }
 public static void main(String args[])
 { System.out.print("Enter input string: ");
 String input = Console.readString();
 System.out.println("String converted to: " + switchCase(input));
 }
}

�

Method Description

Methods bound to variables of type Double
boolean isNaN() returns true if variable equals "Not-A-Number" NaN
boolean isInfinite() returns true if variable equals plus or minus infinity
double doubleValue() returns the double value of the variable
boolean equals(Object obj) returns true if input variable is a Double with equal

value as the variable owning this operation
String toString() returns a String representing this value

Methods bound to the class Double
Double valueOf(String s)
 throws NumberFormatException

converts the input string to Double, if possible,

otherwise throws a NumberFormatException
String toString(double d) returns a String representing the input value

Table 2.40: Operations bound to Double variables and class

Example 2.28: Using Double operations

Write some code that checks two double numbers x and y for equality. The code should

take into account that doubles can be infinite or NaN. In each situation, the code should

display exactly why the numbers are equal (if they are).

Java by Definition Chapter 2: Basic Programming Page 54

Bert G. Wachsmuth Version 1.0, August 2000

Problem Analysis: Usually the double-equal operator checks two doubles for equality but consider

the following example:

double x = (4.0 – 4.0) / (6.0 – 6.0);
double y = 0.0 / 0.0;
System.out.println("x == y is " + (x == y));

That code segment will compile and execute without problems, but x and y will evaluate to "NaN" (not

a number). That is mathematically correct, because you can not divide by zero. Even though both

values are "NaN", the code will state that x and y are not equal.

Program Implementation: We have to take several cases into account: are the numbers "plain"

numbers, NaN, or plus or minus infinity? Therefore the operations isNaN and isInfinite of the

Double class will be useful, which are bound to variables. Assuming that x and y are the double

values to check:

Double X = new Double(x);
Double Y = new Double(y);

if ((X.isNaN()) && (Y.isNaN()))
 System.out.println("Both doubles are NaN (not-a-number)");
else if ((X.isInfinite()) && (Y.isInfinite()) && (x * y > 0))
 System.out.println("Both doubles are infinite with the same sign");
else if (x == y)
 System.out.println("Both numbers are the same");
else
 System.out.println("The doubles are different");

�

Method Description

Methods bound to variables of type Integer
int intValue() returns the int value of the variable
boolean equals(Object obj) returns true if input variable is a Double with equal

value as the variable owning this operation
String toString() returns a String representation of this value

Methods bound to the class Integer
Integer valueOf(String s)
 throws NumberFormatException

converts input to corresponding Integer, if possible,

otherwise throws a NumberFormatException
String toString(int i) returns a String representation of the input value

Table 2.41: Operations bound to Integer variables

Example 2.29: Using Integer operations

Write a method that converts a String entered on the command line to the

corresponding int value. What happens if the string does not represent an integer?

The method valueOf bound to the class Integer seems appropriate, but it returns an Integer, not an

int.34 The method intValue returns an int but it is bound to a variable of type Integer. We will use

both methods, first valueOf to create an Integer variable, then intValue applied to that variable:

public class IntegerConverter
{ public static int convertToInt(String s)
 { Integer I = Integer.valueOf(s);

34
 We will ignore the keywords throws NumberFormatException for the valueOf method and explain it in chapter5.

Java by Definition Chapter 2: Basic Programming Page 55

Bert G. Wachsmuth Version 1.0, August 2000

 return I.intValue();
 }
 public static void main(String args[])
 { if (args.length > 0)
 System.out.println(convertToInt(args[0]));
 else
 System.out.println("Nothing to convert");
 }
}

Figure 4 shows some tests of our conversion method:

Figure 2.42: Testing the convertToInteger method

When the input string does not represent an integer our program generates a runtime error. At this

point there is little we can do about that, but chapter 5 will explain how to use Java's error-handling

mechanism to improve such conversion methods.

�

Case Study: Solving a System of Linear Equations

In this optional section we create a program to solve a system of linear equations illustrating the

usefulness of two-dimensional arrays. The program pulls together almost everything we have

learned so far into one project. The example uses a fair amount of mathematics and you might want

to take a brief look at a "Linear Algebra" text to recall how to solve a system of linear equations.

Example 2.30: Solving a system of linear equations

Create a program that can solve a system of N linear equations in N variables.

This is a complex task, but with the help of modularization (subtasks) we should be able to handle it

just fine.

Problem Analysis: First, let's review the mathematics behind the problem so that we have a clear

understanding of the steps involved. Here is an example of a system of three linear equations in

three unknowns:

2x + 4y + 6z = 10
 x – 2y – 3z = 6
2x – 2y + 4z = 8

Java by Definition Chapter 2: Basic Programming Page 56

Bert G. Wachsmuth Version 1.0, August 2000

To solve this system in an efficient and organized manner, we label the columns of a table with the

names of the variables and add a separate column for the right-hand side. Then we fill in the

numbers from the above equations, which gives us table 2.43:

x y z RHS
2 4 6 10
1 -2 -3 6
2 -2 4 8

Table 2.43: Augmented coefficient matrix with headings

If an equation does not contain a variable, we enter a zero in the corresponding cell. From this table

we extract the numbers only to form the two-dimensional array called the augmented coefficient

matrix:

















−

−−

8422

6321

10642

The goal is to convert this matrix into another one called the normal form of the coefficient matrix

that has the numbers 1 in the main diagonal and 0 everywhere else (except possibly the last

column).35 To achieve this, we can use the following operations:

Legal Matrix Operations:

(A) You can swap any two rows.

(B) You can multiply or divide an entire row by any number except zero.

(C) You can replace any row by the sum of itself and a non-zero multiple of another row.

1. Make sure the number in position [0][0] is 1 by dividing the first row by 2 (operation B).

[]

















−

−−

8422

6321

10642

 =>

[]

















−

−−

8422

6321

5321

2. We use the 1st row to turn the first numbers in the 2nd and 3rd row to 0 by adding to them

suitable multiples of the 1st row (operation C).

[]
()
() 
















−

−−

8422

6321

5321

 =>

[]
()

















−

−−

8422

1640

5321

 =>

[]

() 















−−−

−−

2260

1640

5321

3. We turn the number in position [1][1] to 1 by dividing the 2nd row by –4 (operation B).

[]
















−−−

−−

2260

1640

5321

 => []
















−−−

−

2260

25.05.110

5321

4. We use the 2nd row to turn the second numbers in the 1st and 3rd row to 0 by adding to them

suitable multiples of the 2nd row (operation C).

35
 Not every system of linear equations has a solution, and sometimes there is more than one solution. The normal

form of the augmented matrix will tell us whether there is no solution, one solution, or more than one solution.

Java by Definition Chapter 2: Basic Programming Page 57

Bert G. Wachsmuth Version 1.0, August 2000

()
[]
() 
















−−−

−

2260

25.05.110

5321

 =>

()
[]

















−−−

−

2260

25.05.110

5.5001

 => []
() 
















−

−

5.3700

25.05.110

5.5001

5. We turn the number in position [2][2] to 1 by dividing the 3rd row by 7 (operation B)

[] 















−

−

5.3700

25.05.110

5.5001

 =>

[] 















−

−

5.0100

25.05.110

5.5001

6. We use the 3rd row to turn the third numbers in the 1st and 2nd row to 0 by adding to them

suitable multiples of the 3rd row (the 1st row is already in proper form) (operation C).

()
()
[] 
















−

−

5.0100

25.05.110

5.5001

 => ()
[] 
















−

−

5.0100

5.0010

5.5001

We are done, because the last matrix is now in normal form. Converted back into a table it reads:

x y z RHS

1 0 0 5.5

0 1 0 0.5

0 0 1 -0.5
Table 2.44: =ormal form of augmented coefficient matrix with headings

Therefore x = 5.5, y = 0.5, and z = -0.5. A quick check plugging these values into the original

equations will show that these answers are correct.

Program Implementation: Now we are ready to create a program that can do these calculations

for us, and in fact can handle larger systems of equations just as well. We clearly need to be able to

do the "valid matrix operations", so those are good candidates for separate methods:

• Operation A: Swap two rows, where the input indicates which rows to swap:

public static void swapRows(double matrix[][], int row1, int row2)
{ for (int col = 0; col < matrix[row1].length; col++)
 { double tmp = matrix[row1][col];
 matrix[row1][col] = matrix[row2][col];
 matrix[row2][col] = tmp;
 }
}

• Operation B: Multiply a row by a number where the input indicates which row and number to

use:

public static void multRow(double matrix[][], double number, int row)
{ for (int col = 0; col < matrix[row].length; col++)
 matrix[row][col] *= number;
}

• Operation C: Replace a row by the sum of itself and a multiple of another row, where the input

indicates which rows to add, and by what number to multiply one of them:

public static void addRows(double matrix[][], double num, int row1, int row2)
{ for (int col = 0; col < matrix[row1].length; col++)

Java by Definition Chapter 2: Basic Programming Page 58

Bert G. Wachsmuth Version 1.0, August 2000

 matrix[row2][col] += num * matrix[row1][col];
}

The input parameter row2 also indicates that row row2 is to be replaced while row row1 will be

multiplied by the number num.

In addition we will need methods to create the augmented coefficient matrix corresponding to the

system to solve and to display a matrix. In example 2.17 we already created a showMatrix method,

which we can reuse without change for our current program. A complete program to solve the above

system of three equations in three unknowns could now look as follows:

public class EquationSolver
{ public static void swapRows(double matrix[][],int row1,int row2)
 { /* as above */ }
 public static void multRow(double matrix[][],double number,int row)
 { /* as above */ }
 public static void addRows(double matrix[][],double num,int row1,int row2)
 { /* as above */ }
 public static void showMatrix(double matrix[][])
 { /* as in example 2.17 */ }
 public static double[][] createMatrix()
 { double matrix[][] = { {2,4,6,10},
 {1,-2,-3,6},
 {2,-2,4,8} };
 return matrix;
 }
 public static void main(String args[])
 { double matrix[][] = createMatrix();
 showMatrix(matrix);
 multRow(matrix, 1.0 / matrix[0][0], 0);
 addRows(matrix, -matrix[1][0], 0, 1);
 addRows(matrix, -matrix[2][0], 0, 2);

 multRow(matrix, 1.0 / matrix[1][1], 1);
 addRows(matrix, -matrix[0][1], 1, 0);
 addRows(matrix, -matrix[2][1], 1, 2);

 multRow(matrix, 1.0 / matrix[2][2], 2);
 addRows(matrix, -matrix[0][2], 2, 0);
 addRows(matrix, -matrix[1][2], 2, 1);

 showMatrix(matrix);
 }
}

This program solves at best a system of three equations whereas our goal is to create a program that

can handle an arbitrary system. We therefore have to introduce additional methods

• A method normalizeColumn to manipulate a column until it contains only one 1 and the rest 0's:

public static void normalizeColumn(double matrix[][], int col)
{ multRow(matrix, 1.0 / matrix[col][col], col);
 for (int row = 0; row < matrix.length; row++)
 if (row != col)
 addRows(matrix, -matrix[row][col], col, row);
}

For example, a call to normalizeColumn(matrix, 2) changes the entry in [2][2] to 1 and all

other numbers in column 2 to 0.

Java by Definition Chapter 2: Basic Programming Page 59

Bert G. Wachsmuth Version 1.0, August 2000

• A method normalizeMatrix to apply normalizeColumn to all columns.

public static void normalizeMatrix(double matrix[][])
{ for (int col = 0; col < matrix.length; col++)
 normalizeColumn(matrix, col);
}

This method will apply normalizeColumn to all columns, up the number of rows of the matrix,

because an augmented coefficient matrix has one more column than rows and we do not want to

normalize the last column.

Now a single call to normalizeMarix in the main method of our program will place 1's in the main

diagonal and 0's elsewhere, and we can read off the solution by calling showMatrix:

public static void main(String args[])
{ double matrix[][] = createMatrix();
 normalizeMatrix(matrix);
 showMatrix(matrix);
}

Our program should now be able to solve any system of linear equations, but we made one significant

error:

In the normalizeColumn method we divide the rows by their entry in the main diagonal but if

that entry was zero our division – and the entire program – would fail.

Our solution for this dilemma is to try to swap rows until an entry in the main diagonal is not zero

before calling normalizeColumn. But, as it turns out, that is not always possible. There are systems

of equations that do not have a unique solution, or no solution at all, and this situation corresponds

to the fact of not being able to find a non-zero entry in a particular column.36 For our code that

means that we need to add another method to swap columns if possible, or to inform us when this is

not possible so that we know there is no unique solution.

• The method foundNonZeroDiag will return true and swap the rows if it finds a non-zero entry in

the desired column, or return false and do nothing otherwise.

public static boolean foundNonZeroDiag(double matrix[][], int diag)
{ for (int row = diag; row < matrix.length; row++)
 { if (matrix[row][diag] != 0)
 { swapRows(matrix, row, diag);
 return true;
 }
 }
 return false;
}

For example, foundNonZeroDiag(matrix, 2) checks each row from 2 to the number of rows for a

non-zero entry in column 2. If it finds one, it swaps rows and returns true so that the entry in

[2][2] is now non-zero. If row 2 already had a non-zero entry in column 2, the method returns

immediately. If no row 2 or below had a non-zero element in column 2, the method returns false.

Now, of course, we have to make sure that normalizeMatrix uses foundNonZeroDiag:

36
 For details about the mathematics, please refer to a book on linear algebra.

Java by Definition Chapter 2: Basic Programming Page 60

Bert G. Wachsmuth Version 1.0, August 2000

public static boolean normalizeMatrix(double matrix[][])
{ for (int col = 0; col < matrix.length; col++)
 { if (foundNonZeroDiag(matrix, col))
 normalizeColumn(matrix, col);
 else
 return false;
 }
 return true;
}

The new version returns true if it was able to normalize the matrix, or false if it could not do so

based on the information provided by foundNonZeroDiag .

The final step is to change createMatrix so that the user can enter an arbitrary augmented

coefficient matrix corresponding to the system to solve. We will use the readDouble and readInt

methods of the Console class (see example 2.24) to obtain the user input (Console.java must be

located in the same directory as EquationSolver). Here is the final version of our program:

public class EquationSolver
{ public static void swapRows(double matrix[][],int row1,int row2)
 { /* as above */ }
 public static void multRow(double matrix[][],double number,int row)
 { /* as above */ }
 public static void addRows(double matrix[][],double num,int row1,int row2)
 { /* as above */ }
 public static boolean foundNonZeroDiag(double matrix[][], int diag)
 { /* as above */ }
 public static void normalizeColumn(double matrix[][], int col)
 { /* as above */ }
 public static boolean normalizeMatrix(double matrix[][])
 { /* as above (modified version) */ }
 public static void showMatrix(double matrix[][])
 { /* as in example 2.17 */ }
 public static double[][] createMatrix()
 { System.out.print("Enter number of variables: ");
 int numVars = Console.readInt();
 double matrix[][] = new double[numVars][numVars+1];
 for (int row = 0; row < numVars; row++)
 { for (int col = 0; col < numVars; col++)
 { System.out.print("Coefficient row " + (row+1) +
 ", column " + (col+1) + ": ");
 matrix[row][col] = Console.readDouble();
 }
 System.out.print("Right-hand side for row " + (row+1) + ": ");
 matrix[row][numVars] = Console.readDouble();
 }
 return matrix;
 }
 public static void main(String args[])
 { double matrix[][] = createMatrix();
 showMatrix(matrix);
 if (normalizeMatrix(matrix))
 showMatrix(matrix);
 else
 System.out.println("No solution or no unique solution");
 }
}

We have now a working program that can solve any system of linear equations that has a unique

solution. The next step is to test of our program.

Java by Definition Chapter 2: Basic Programming Page 61

Bert G. Wachsmuth Version 1.0, August 2000

Testing the Program: Figures 2.45, 2.46, and 2.47 show three runs of our equation solver.

Here is our original system of equations:

2x + 4y + 6z = 10
x – 2y – 3z = 6
2x – 2y + 4z = 8

As we previously worked out "by hand", the

solution is x = 5.5, y = 0.5, and z = -0.5, just

as shown by our program.

Figure 2.45: Solved system of equation

Here is a system that has no solution:

z = 1
y = 1
2y = 1

Our program confirms that, so we are looking

good.

Figure 2.46: System of equations with no solution

Finally, here is a (randomly chosen) system of six equations with six unknowns:

2x1 + 4x2 + 6x3 + x4 + x5 + x6 = 2
 x1 + 2x2 + 3x3 + 6x4 + 6x5 + 5x6 = 4
2x1 + 2x2 + 4x3 + 8x4 + 2x5 + 9x6 = 7
 x5 = 1
2x1 + 3x3 + 4x5 = 5
 x2 + 2x4 + 3x6 = 2

Figure 2.47: Solved system of six equations with six unknown variables

Using a calculator (and a little bit of time and patience) we can confirm that our program again

delivered the correct solution. We therefore pronounce it as working properly.

Java by Definition Chapter 2: Basic Programming Page 62

Bert G. Wachsmuth Version 1.0, August 2000

Program documentation: The last step is to create proper documentation for our methods. We will

of course use documentation comments and the javadoc tool. Our commented class looks as follows:

/** Solves a system of N linear equations in N variables. It asks the user to
 enter the augmented coefficient matrix corresponding to the system of
 equations to solve. The program will deliver the normalized coefficient
 matrix if there is a unique solution, or it will inform the user that there
 is no solution, or no unique solution. Requires class Console.
 @author Bert G. Wachsmuth
 @version 1.0 (12/08/99)
*/
public class EquationSolver
{ /** Swap row <code>row1</code> and <code>row2</code> in matrix
 <code>matrix</code> */
 public static void swapRows(double matrix[][],int row1,int row2)
 /** Multiplies row <code>row</code> of matrix <code>matrix</code> with
 <code>number</code>. The answer replaces row <code>row</code>. */
 public static void multRow(double matrix[][],double number,int row)
 /** Multiplies row <code>row1</code> by <code>num</code>, adds the result
 to <code>row2</code>, and replaces row <code>row2</code>. */
 public static void addRows(double matrix[][],double num,int row1,int row2)
 /** Finds non-zero entry at position <code>[diag][diag]</code>. If possible,
 swaps rows so that row <code>diag</code> will have non-zero entry in
 column <code>diag</code> and returns true. Otherwise returns false. */
 public static boolean foundNonZeroDiag(double matrix[][], int diag)
 /** Changes all entries in column <code>col</code> so that the entry at
 position <code>[col][col]</code> is 1, all others in that column 0.
 The method assumes that matrix[diag][diag] is not zero. */
 public static void normalizeColumn(double matrix[][], int col)
 /** Converts matrix <code>matrix</code> into normal form is possible and
 returns true. Otherwise returns false. */
 public static boolean normalizeMatrix(double matrix[][])
 /** Displays matrix <code>matrix</code> on standard output. */
 public static void showMatrix(double matrix[][])
 /** Asks the user to enter matrix. User input is obtained via the Console
 class, which must be present in the same directory as this class. */
 public static double[][] createMatrix()
}

�

Chapter Summary

In this chapter we introduced the following concepts and terminology:

Methods, Java Program, Method Exit Point

See section 2.1, examples 2.01 (Using methods to compute properties of a square) and 2.02

(Using methods to find the sum of prime numbers)

Input Parameters for Methods

See section 2.1, examples 2.03 (Illustrating value parameters) and 2.04 (Illustrating valid

input expressions)

Reference Type, Checking Reference Variables for Equality

See section 2.1, example 2.05 (Equality of String types)

Reference Types as Input Parameters

See section 2.1, example 2.06 (Using reference types as method input parameters)

Fields and Local Variables

See section 2.2, example 2.07Illustrating fields and local variables)

Java by Definition Chapter 2: Basic Programming Page 63

Bert G. Wachsmuth Version 1.0, August 2000

Scope Rules

See section 2.2, examples 2.08Scope of fields and local variables), 2.09Compound interest

computation using fields), and 2.10 Illustrating the scope rule)

Declaring Arrays, Initializing Arrays

See section 2.3, example 2.11 System.out.println applied to arrays)

Accessing Array Elements

See section 2.3, examples 2.12Displaying an array) and 2.13Arrays of String)

Arrays as Method Parameters

See section 2.3, examples 2.14Arrays as method input parameters) and 2.15Compound

interest computation using arrays)

Command Line Input

See section 2.3, example 2.16Command line input to main method)

Two-Dimensional Arrays

See section 2.3, examples 2.17Working with two-dimensional arrays), 2.18 (Two-dimensional

array representing a table of sales figures), and 2.19 (Triangular array for prefix sales

averages)

Implementation Comments

See section 2.4, examples 2.20 (Proper and improper use of comments) and 2.21 (Proper use of

comments)

Documentation Comments

See section 2.4, example 2.22Using javadoc comments)

The javadoc Tool

See section 2.4, example 2.23Using the javadoc tool)

The Console Class

See section 2.4, examples 2.24 (The Console class for simplified user input) and 2.25

(Computing Exam Average and Standard Deviation)

Error Types

See section 2.4, example 2.26Error types and debugging tips)

The Basic Wrapper Classes

See section 2.5, examples 2.27 (Using Character operations), 2.28 (Using Double operations),

and 2.29 (Using Integer operations)

Case Study: Solving a System of Linear Equations

Java by Definition Chapter 2: Basic Programming Page 64 of 64

Bert G. Wachsmuth Version 1.0, August 2000

