
Java by Definition Chapter 1: Foundations Page 1 of 60

Bert G. Wachsmuth DRAFT April 2009

Chapter 1: Foundations

Java is a powerful object-oriented programming language introduced by Sun Microsystems in 1995,

which has built-in support to create programs with a graphical user interface (GUI), utilize the

Internet, create client-server solutions, and much more. Programs written in Java can run, without

change, on any of the common computer operating systems Windows 95/NT, Macintosh, and Unix. A

variant of Java programs called applets can be embedded inside a web page and execute on the

computer that is viewing the page, automatically and in a secure environment.

As a language, Java is closely related to C++, which is also object-oriented but retains a lot of

idiosyncrasies inherited from its predecessor language C. Java has removed the inconsistent

elements from C++, is exclusively object-oriented, and can be considered a modern version of C++.1

Because of its logical structure Java has quickly become a popular choice as a teaching language,2

and because of its extensive Internet support and the promise of writing programs once and using

them on every operating system Java is becoming more and more accepted in industry.

There are a variety of commercial Integrated Development Environments (IDE) available to create

Java programs, such as Visual J++ from Microsoft or Java Workshop from SUN Microsystems. This

text focuses on using the basic Java Developer’s Toolkit (JDK), which is available free of charge over

the Internet at www.javasoft.com. That toolkit contains the Java compiler, the Java Virtual

Machine (JVM) necessary to run Java programs, extensive documentation, and a variety of utilities

helpful for creating Java programs. The only additional tool you need is a convenient text editor to

create Java source code such as Programmer’s File Editor (for Windows 95/98/NT), BBEdit Lite (for

Macintosh), or Emacs (for Unix). With these tools everything that is necessary to create Java

programs can be downloaded for free from the Internet.3

This chapter presents the fundamentals of programming in Java. Section 1.1 introduces the Java

compiler and Virtual Machine and shows the basic steps involved in creating, compiling, and

executing a Java program. Section 1.2 defines basic data types, assignments, and arithmetic, while

section 1.3 describes control structures such as conditional execution and loops. Section 1.4 describes

the data types String and StringBuffer, which are used to handle text. Section 1.5 illustrates how

to define constants and how to obtain output including simple formatting options. The last section,

which is optional, provides a case study dealing with theoretical and numerical aspects involved in

computing prime numbers.

We are not introducing object-oriented programming until chapter 3 but even the simplest Java

program is a class rather than a program, so we are using object-oriented programming even if we do

not formally define it until later.

1
 Java does have disadvantages. For example, programs written in Java are generally slower than those in C++ and it

is difficult to accomplish system-level tasks in Java.
2
 Java compilers and tools are available for free, an important consideration for academic and student budgets.

3
 Appendix A and B discuss how to download and install the JDK and the various tools. If you have not installed the

JDK on your computer, you may want to read these appendices before continuing.

Java by Definition Chapter 1: Foundations Page 2 of 60

Bert G. Wachsmuth DRAFT April 2009

Quick View

Here is a quick overview of the topics that will be covered in this chapter.

(*) This section is optional but recommended.

(**) This section is optional

1.1. The Java Compiler and the Java Virtual Machine

To create a Java program, you first create the source code, a text file containing your program

written according to the Java language specifications. You can use any text editor for that such as

Notepad (on Windows), SimpleText (on Macintosh), or vi (on Unix), or – much preferred – one of the

programs recommended in appendix B. There are a few basic principles that must be followed:

Basic Java Programming Guidelines

Every Java program must follow these guidelines:

 Java is case sensitive, i.e. the word Program is different from program.

 Curly brackets { and } are used to group statements together.

 An executable Java program must contain at least the following lines as a framework:

 public class Name

 { public static void main(String args[])

 { ... program code ...

 }

(*) 1.5. Output and Constants
Simple Screen Output; Formatting Decimal Numbers; Named Constants

1.4. Strings
What is a String; String Operations; StringBuffer and Its Operations

1.2. Data Types, Assignments, and Arithmetic
Basic Data Types and Representation; Declaring Variables and Storing Values;

Arithmetic with Numeric Types; Shortcuts and Type-Casting; Logic and Comparison

1.1. The Java Compiler and the Java Virtual Machine
Compiling a Java Program or Class; Executing a Java Program or Class; The Java

Virtual Machine (JVM)

1.3. Basic Program Control
Conditional Execution: if and switch; Loop Control: for, while, and do

(**) Case Study: Java Primes and the Prime Number Theorem

Java by Definition Chapter 1: Foundations Page 3 of 60

Bert G. Wachsmuth DRAFT April 2009

 }

 Every statement whose next statement is not a separate group must end in a semicolon.

 A Java program containing the above framework must be saved using the filename

Name.java, where Name (including correct upper and lower cases) is the word that follows

the keywords public class and the file extension is .java.

public class Name

public static void main(String args[])

program code

Figure 1.01: Representation of a basic Java program saved as Name.java

In other words, to create a Java program you first create a text file containing the lines

public class Name

{ public static void main(String args[])

 { ... more lines ...

 }

}

Software Engineering Tip: While it is possible to write a program in one long line, a good

Java program should be indented to clarify which line belong to which group. We use the

following convention:4

 A block starts with the open curly bracket, followed by Java code.

 A block ends with a single closing curly bracket on a line by itself unless the brackets enclose

a single statement.

 Lines that are part of the same block have the same level of indentation.

 Blocks within blocks are indented at increasing levels of indentation.

The file containing our code is called the source code file.

Source Code

A Java source code file is a text file that contains programming code written according to the

Java language specifications, resembling a mixture of mathematical language and English. A

computer cannot execute source code, but humans can read and understand it.

Java source code files should be saved as Name.java, where Name is the name that appears in the

first line of the program: public class Name. That Name is referred to as the name of the class,

or program. By convention its first letter is capitalized.

4
 Different authors prefer different styles of indentation. Some authors, for example, use a style similar to:

public static void main(String args[]) {

... }

Java by Definition Chapter 1: Foundations Page 4 of 60

Bert G. Wachsmuth DRAFT April 2009

public class Name

public static void main(String args[])

program code

save as

Figure 1.02: Saving a Java source code file

Here is an example of a Java source code file. We will later explain what the various lines mean; for

now it is simply a text file that looks as shown.

Example 1.01: The first source code file

Create a source code file containing the necessary Java code to get the computer to write "Hi – this

is my first program" on the screen.

Our first Java program looks as follows:

public class Test

{ public static void main(String args[])

 { System.out.println("Hi – this is my first program");

 }

}

This program, or class, is called Test and must be saved under the file name Test.java.

Compiling a Java Program or Class

A source code file, which is more or less readable in plain English, needs to be transformed into

another format before the computer can act upon it. That translation process is called compiling and

is accomplished using the Java compiler javac from the Java Developer's Kit (JDK).

Compiling

Compiling is the process of transforming the source code file into a format that the computer can

understand and process. The resulting file is called the byte-code, or class, file. The name of the

class file is the same as the name of the program plus the extension .class. The program javac

from the Java Developer's Kit is used to transform a source code file into a class file.

Under Windows and Unix, execute the compiler from the command line by typing javac

FileName.java.
5
 On a Macintosh, double-click the javac compiler icon and select the source

code file.

public class Name

public static void main(String args[])

program code

save as

javac

Figure 1.03: Compiling and creating class file

5
 See appendix B for more convenient ways of compiling source code.

Java by Definition Chapter 1: Foundations Page 5 of 60

Bert G. Wachsmuth DRAFT April 2009

Example 1.02: Compiling a source code file

Use javac, the Java compiler, to transform the source code file from example 1.01 into the

corresponding class file.

The Java compiler is itself a computer program with a minimal interface. Under Windows and Unix,

you execute it from the command line by typing:

javac Test.java

Using a Macintosh, you double-click on the Java compiler icon, then select the file Test.java.

The Java compiler checks your source code for compliance with the Java language specifications and

if there are no errors it produces a file named

Test.class

6

If the compiler detects errors, it displays corresponding error messages including the line number

where an error occurred and a brief explanation. You need to return to your source code file, fix the

errors, save the updated file, and compile it again.

Before executing a Java class file we take a look at what happens when the Java compiler

encounters an error.

Example 1.03: Compiling source code with errors

Create a Java source code file that contains incorrect code, then compile it. Notice the error message.

Fix your code until it compiles without any error messages.

We create a file similar to the above, but containing some errors:

public class Test

{ public static void main(String args[])

 system.out.println("Hi – this is my first program");

 }

}

The code contains two errors but when we compile it, the compiler finds only one, a missing

beginning bracket in line 2, as shown in figure 1.04.

Figure 4: Compiling Test.java containing errors

We add that bracket according to our basic framework for Java programs:

public class Test

{ public static void main(String args[])

6 The Java compiler does not create an object file, which is linked with other object files to form an executable

program, as other compiler do. It creates a byte-code file that can be interpreted by the Java Virtual Machine.

Java by Definition Chapter 1: Foundations Page 6 of 60

Bert G. Wachsmuth DRAFT April 2009

 { system.out.println("Hi – this is my first program");

 }

}

After saving and compiling the modified source code we expect no further problems, but the compiler

informs us that the word system in line 3 is incorrect (see figure 1.05).

Figure 1.05: Compiling with lexical error

Indeed, we should have typed System.out.println(...) instead of system.out.println(...),

because Java is case sensitive. After fixing that error the compiler creates the class file as before.

Software Engineering Tip: In case of an error, the javac compiler shows the line number and

position of where it thinks the error occurred in your source code.

 If the compiler points out an error, then there is an error at or before the indicated position.

 If the compiler reports a certain number of errors, than this is the least amount of errors.

 If one error is fixed, other errors may automatically disappear or new ones may appear.

Fix your source code a few errors at a time. Recompile often to see if the number of errors and

the error messages change until no errors are reported. If you can not find an error at the

position indicated by the compiler, look at the code before that position.

Executing a Java Program or Class

The Java compiler does not produce an executable file, so Java programs can not execute under the

operating system of your machine. Instead they execute inside a Java Virtual Machine, which is

invoked using the java program of the JDK.

Executing a Class File

To execute a Java program the Java Developer's Kit provides a program called java. When

executing that program with your class file as parameter the following happens:

 the Java Virtual Machine (JVM) is created inside your computer

 the JVM locates and reads your class files

 the JVM inspects your class file for any security violations

 the JVM executes, or interprets, your class file according to its instructions if possible

Java by Definition Chapter 1: Foundations Page 7 of 60

Bert G. Wachsmuth DRAFT April 2009

Under Windows and Unix, execute a program by typing at the command prompt java Name,

where Name is the name of the program (no extension). On a Macintosh, double-click the java

icon and select the appropriate class file.
7

public class Name

public static void main(String args[])

program code

save as

javac

java

Figure 1.06: Executing a class file

Example 1.04: Executing a class file

In example 1.02 we created a source code file Test.java and compiled it into the class file

Test.class. Use the java program from the JDK to execute that program.

To execute the above program, we type (on a Macintosh, choose the appropriate icon):

java Test

i.e. the command java, followed by the name of a class file without the .class extension. The output

of our program contains no surprises and is shown in figure 1.07.

Figure 1.07: Our first functioning Java program

A good question at this point is which line in a Java program executes first.

Default Program Entry Point

The default program entry point is that part of a class (or program) where execution begins. For

every Java class (or program), the standard program entry point consists of the line:

 public static void main(String args[])

If that line is not present in your source code, the JVM can not execute your program and

displays an error message.

Example 1.05: Executing class file without main

Write a small Java program similar to Test.java program in example 1.02, but misspell the word

main slightly. Does the program compile? Does the program execute?

Here is a sample program, which is the same as before but instead of main we type Maine:

public class Test2

{ public static void Maine(String args[])

7
 See appendix B for more convenient ways of executing class files.

Java by Definition Chapter 1: Foundations Page 8 of 60

Bert G. Wachsmuth DRAFT April 2009

 { System.out.println("Hi – this is my first program");

 }

}

After saving this file as Test2.java we can compile it as follows:

javac Test2.java

The program compiles without errors but if we try to execute it by typing

java Test2

we see the (run-time) error message shown in figure 1.08.

Figure 1.08: Compling Test2.java with incorrect public static void main line

This means that while the class file contains no compiler errors, it is missing the default program

entry point public static void main and the Java Virtual Machine can not start the program.

The Java Virtual Machine (JVM)

At this point, we need to explain what the Java Virtual Machine is and how it relates to the

operating system and to Java class files.

Java Virtual Machine (JVM)

The Java Virtual Machine (JVM) is a platform-independent engine used to run Java applets and

applications. The JVM knows nothing of the Java programming language, but it does understand

the particular file format of the platform and implementation independent class file produced by a

Java compiler. Therefore, class files produced by a Java compiler on one system can execute

without change on any system that can invoke a Java Virtual Machine.
8

When invoked with a particular class file, the JVM loads the file, goes through a verification

process to ensure system security, and executes the instructions in that class file.

The JVM, in other words, forms a layer between the operating system and the Java program that is

trying to execute. That explains how one Java program can run without change on a variety of

systems: it can not! A Java program runs on only one system, namely the Java Virtual Machine.

That virtual system, in turn, runs on a variety of operating systems and is programmed quite

8
 In general, the Java Virtual Machine is an abstractly specified class file interpreter that can be realized by different

software makers. The JVM that comes with the JDK was created by SUN Microsystems, but any other JVM is also

able to run the same class files. Different JVM's can vary in efficiency, but they all must run the same class files.

Java by Definition Chapter 1: Foundations Page 9 of 60

Bert G. Wachsmuth DRAFT April 2009

differently for various systems. To the Java programmer, it provides a unified interface to the actual

system calls of the operating system.9

You can include graphics, graphical user interface elements, multimedia, and networking operations

in a Java program and the JVM will negotiate the necessary details between the class file(s) and the

underlying operating system. The JVM produces exactly the same results – in theory – regardless of

the underlying operating system. In the Basic (or C, or C++) programming language, for example,

you can create code that specifies to multiply two integers 1000 and 2000 and store the result as

another integer. That code works fine on some systems, but can produce negative numbers on

others.10 In Java, this can not happen: either the code fails on all platforms, or it works on all

platforms.

javac javac javac

java java

Java Source
Code

Java Byte
Code

Java Virtual
Machine

Operating-system
dependent tools

Operating-system
independent

java

Unix Win Mac

Unix Win Mac

Unix Win Mac

Figure 1.09: Illustrating the machine dependent/independent parts of Java programs

Because the JVM is in effect its own computer, it can shield the actual computer it is running on

from potentially harmful effects of a Java program. This is especially important because Java

programs known as applets can automatically start executing on your machine when you are surfing

the web if the appropriate feature of your web browser is enabled. If these programs were allowed to

meddle with your system, you could accidentally execute a program that would proceed to erase your

entire disk. That, of course, would prompt people to disable Java on their web browser, which in turn

would be bad news for anyone who supports the Java concept.

Fortunately, Java provides advanced security mechanisms to stop unwanted programs doing any

damage on your system and since Java programs do not run directly on your operating system,

security can be tightly enforced. There have been occasional rumors about mischievous Java

programs distributed through the web, but so far there have been no reports of any actual damage

from such programs. SUN Microsystems and others are constantly on the lookout to find any

potential security holes and to plug them as soon as they are discovered.

9
 This is somewhat similar to old Basic programs: a simple Basic program can run on virtually any system that has a

Basic interpreter installed since the interpreter mediates between the program trying to run and the operating system.
10

 Programming languages have a largest possible integer whose value can differ on different systems. A C++

program executing on a machine with a largest integer bigger than 2,000,000 produces the correct result, but on a

system where the largest integer is, say, 32,767 it fails. The JVM has the same largest integer on every platform.

Java by Definition Chapter 1: Foundations Page 10 of 60

Bert G. Wachsmuth DRAFT April 2009

Security

The JVM enforces tight security and can effectively shield the operating system from unwanted

effects of a Java program. Before the virtual machine executes a class file, it undergoes a multi-

pass verification process to ensure system security, including verification of the correct class file

format and a data flow analysis.

In addition, the JVM imposes run-time security restrictions that depend on whether it executes an

applet (strict security) or an application (relaxed security).
11

To summarize, Java class files are not stand-alone executable programs that run on the operating

system, but instead they are interpreted by the JVM which in turn runs on the operating system. To

create a class file, a Java source code file is compiled using the Java compiler javac. To execute the

file, the JVM needs to be invoked with the class file as input. The JVM looks for the default program

entry point public static void main and begins execution at that point if the class file is of valid

format.

1.2. Data Types, Assignments, and Arithmetic

Java programs can store data in basic data types or in more complex types called classes. We can

also define new types with any degree of complexity, which we explain in chapter 3. For now, we

focus on the basic Java data types and how they are represented inside the computer.

Basic Data Types and Representation

Primitive Java Data Types

Java supports the following primitive, or basic, data types:

 int, long, or short to represent integer numbers

 double or float to represent decimal numbers

 char to represent character values

 boolean to represent logical values

 void to represent "no type"

Each numeric type has a largest and smallest possible value, as indicated in table 1.10.
12

Most programs use int for integers and double for decimal numbers, while long, short, and float

are needed only in special situations.

Type Range
double

largest positive/negative value: ±1.7976931348623157E308

smallest non-zero value: ±4.9E-324

11

 See chapter 9.5 for additional information about the restrictions imposed by the Java security manager.
12

 Java also supports a basic type byte, which we do not need in this text, and another very useful type String,

introduced in section 1.4.

Java by Definition Chapter 1: Foundations Page 11 of 60

Bert G. Wachsmuth DRAFT April 2009

significant digits: 16 digits after decimal point
float largest positive/negative value: ±3.4028235E38

smallest non-zero value: ±1.4E-45

significant digits: 8 digits after decimal point
int largest value 2147483647

smallest value: -2147483648
short largest value 32767

smallest value: -32768
long largest value 9223372036854775807

smallest value: -9223372036854775808

Table 1.10: Ranges for valid decimal types

Each type can contain values called literals or unnamed constants in a particular format.

Literals

Literals are constant values for the basic data types. Java supports the following literals:

 int, short: digits only, with possible leading plus (+) or minus (-) sign

 long: like int literals, but must end with an "L"

 double: digits including possible periodic point or leading plus (+) or minus (-) sign, or

numbers in scientific notation #.###############E±###,
13

 where each #

represents a digit

 float: like double literals, but must end with an "F"

 char: Single Unicode characters enclosed in single quotes, including the special

control sequences described in table 1.11
14

 boolean: true or false

In addition, Java has an object literal called null for object references.

Character literals include the following special characters called control sequences:

Control Sequence Meaning Control Sequence Meaning

\n new line \t tab character

\b backspace \r return

\f form feed \\ backslash

\' single quote \" double quote

Table 1.11: Common character control sequences

The ranges for the numeric types are the same, regardless of the underlying operating system (after

all, programs run under the JVM, not the native operating system). In languages such as C or C++

an integer sometimes has a range similar to a Java short, and sometimes that of a Java int,

depending on the underlying operating system, which can cause different results if the same

program runs on different systems.

While the JVM is a virtual machine, it is nonetheless running on concrete computer hardware. At

the base of that hardware are transistors, which are essentially lots of on/off switches. Therefore

everything that a computer does must eventually be represented by sequences of on/off switches,

13

 For example, the double number 1.23456E002 = 1.234562 = 123.456
14 Unicode characters support characters in multiple languages and are defined according to their "Unicode Attribute

table" (see http://www.unicode.org/). Every character on a standard US keyboard is a valid Unicode character.

Java by Definition Chapter 1: Foundations Page 12 of 60

Bert G. Wachsmuth DRAFT April 2009

which raises the question how sequences of on/off switches can store int, double, char, and boolean

values. That is easiest to understand for boolean values:

 Reserve one switch per boolean value to store and interpret "off" as false, "on" as true.

To determine how to store an int such as 274 using a sequence of on/off switches you may recall

from you math classes that every positive integer can be uniquely represented as a sequence of 1's

and 0's.

Binary Representation

Take any positive integer X. Then X can be represented as a finite sum of powers of 2 in the form

X = an2
n
 + an-12

n-1
 +...+ a12

1
+ a02

0, where each aj is either 0 or 1 and n is a suitable integer.

The sequence an, an-1, an-2,..., a2, a1, a0 is called the binary representation of the integer

X, i.e. a representation that requires only 0's or 1's. We sometimes write such a binary

representation as (an an-1 ... a2 a1 a0)2 to indicate that the number in parenthesis is in binary

form.
15

To see how this definition works, we convert some numbers from their standard base-10

representation into binary form.

Example 1.06: Converting integers to binary form

Convert the numbers 44 and 63 to their binary representation, and the binary numbers (100010010)2

and (1101011)2 into standard form.

To find the binary representation of the number 44 we write down a few powers of 2 in a table:

64 = 26 32 = 25 16 = 24 8 = 23 4 = 22 2 = 21 1 = 20

The highest power of 2 that fits into 44 is 32, with 12 remaining, so we enter a 1 into the "32" slot:

64 = 26 32 = 25 16 = 24 8 = 23 4 = 22 2 = 21 1 = 20

 1

Since the remainder is 12, the next power of two that fits that remainder is 8, with a new remainder

of 4. We therefore enter a 1 into the "8" slot:

64 = 26 32 = 25 16 = 24 8 = 23 4 = 22 2 = 21 1 = 20

 1 1

The last remainder 4 is itself a power of 2, so that we enter a 1 into the "4" slot. The other powers of

2 are not used, so we enter 0 into their slots:

64 = 26 32 = 25 16 = 24 8 = 23 4 = 22 2 = 21 1 = 20

0 1 0 1 1 0 0

We have arrived at the binary representation (101100)2 of 44 (dropping the leading 0), which can

easily be confirmed: 1*25 + 0*24 + 1*23 + 1*22 + 0*21 + 0*20 = 44.

Similarly, the binary representation of 63 is (111111)2:

15

 Our "usual" numbers can be uniquely represented as a finite sum of powers of 10. For example, the number

12,345 can be written as 1*10
4
 + 2*10

3
 + 3*10

2
 + 4*10

1
 + 5*10

0
 (which equals (11000000111001)2).

Java by Definition Chapter 1: Foundations Page 13 of 60

Bert G. Wachsmuth DRAFT April 2009

64 = 26 32 = 25 16 = 24 8 = 23 4 = 22 2 = 21 1 = 20

0 1 1 1 1 1 1

The converse is also easy: to find out which integers are represented by (100010010)2 and (1101011)2

we enter them into appropriate tables, starting from the right.

256= 28 128 = 27 64 = 26 32 = 25 16 = 24 8 = 23 4 = 22 2 = 21 1 = 20

1 0 0 0 1 0 0 1 0

0 0 1 1 0 1 0 1 1

Then we add those powers of 2 with a non-zero entry: (100010010)2 = 2 + 16 + 256 = 274 and

(1101011)2 = 1 + 2 + 8 + 32 + 64 = 107.

Since every positive integer can be converted to binary form, we combine a fixed number of on/off

switches, interpret "off" as 0 and "on" as 1 and the sequence of switches can store an integer up to a

maximum size.

Bits and Bytes

Computer memory is measured in bits and bytes. One bit is a unit that can store either a 0 or a 1.

A group of 8 bits is called one byte.

Example 1.07: Number of bytes to store boolean, int and long

How many bits or bytes are necessary to store a boolean, int, and long value. How many int and

long values could your computer theoretically hold in memory?

A boolean value has two states so it can be represented by one bit.

Java int values range from –2,147,483,648 to 2,147,483,647 which means that Java must be able to

handle

2,147,483,647 + 2,147,483,648 + 1 = 4,294,967,296

different integers (including 0). That number is divisible by 2 and 4294967296 / 2 = 2147483648 is

even again. If we keep dividing by 2 we find that

4,294,967,296 = 232

That implies that we need 32 on/off switches to represent 32 possible 0's or 1's to store 232 int values.

Therefore, to store any given int Java requires 32 bits, or 4 bytes. The number 1, for example, is

stored as (00000000000000000000000000000001)2, where all of the zeros are necessary so that the

largest possible int can also be stored, including its sign.

Java long values can range from –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 so there

are

9,223,372,036,854,775,807 + 9,223,372,036,854,775,808 + 1 = 18,446,744,073,709,551,616

different long values (including 0). Again this number is a power of 2 and

18,446,744,073,709,551,616 = 264

Java by Definition Chapter 1: Foundations Page 14 of 60

Bert G. Wachsmuth DRAFT April 2009

Therefore we need 64 on/off switches to represent 64 possible 0's or 1's to store 264 long values, or

equivalently we need 64 bits, or 8 bytes, to store any given long value.

To find out how many int and long values a computer can store theoretically, we need to know the

size of the computer's memory. The personal computer used to write this text has 94MB RAM, which

is approximately 94 * 1,000,000 bytes. If 4 bytes are used to store one int, that computer can store

94 * 1,000,000 / 4 ≈ 23,000,000

int values. Similarly, it could store approximately

94,000,000 / 8 ≈ 12,000,000

long values. The actual amount of numbers to store is much lower, because the operating system

and the JVM already occupy a substantial amount of memory.16

Now we understand how the computer stores boolean, int, and long values. Characters are stored

by associating a unique integer with each character, so that characters, too, can be stored as a

sequence of 0's and 1's. Decimal values are more complicated. Suffice it to say that they can be

written in scientific notation and the base and exponent of that representation can be converted

separately to 0's and 1's. An important consequence is that decimal values such as double are not

stored exactly. Therefore what looks like 2.0 on a computer screen is only an approximation of that

number.

Software Engineering Tip: The basic data types available in Java have advantages and

disadvantages.

 Boolean and character values are cheap to store (each requires only a few bits), but their

usefulness is limited because you can not do computations with them.

 Integer values have limited range but integer computations take place quickly.17 In addition,

integer values are always exact values.

 Double values have a large range but computations using double values are slower than

integer computations. In addition, double values are not stored exactly.18

You should always pick the best possible data type for the problem you are solving.

Declaring Variables and Storing Values

To use the basic data types to store information, we must define variables that have one of these

types:

Declaration of Variables

To declare a variable that can store data of a specific type, the syntax:

16

 Modern operating systems can swap unused portions of memory to disk, but an executing program together with

the data it manipulates is usually kept in active memory.
17

 To multiply, for example, (10101)2 by 2 amounts to appending a 0 at the end: 2 * (10101)2 = (101010)2.
18

 The values 10.0 / 3.0 and 1.0 / 3.0 * 10.0 are mathematically equal, but not equal as double values.

Java by Definition Chapter 1: Foundations Page 15 of 60

Bert G. Wachsmuth DRAFT April 2009

 type varName [, varName2,..., varNameN];

is used, where type is one of the basic data types, varName is the name of the variable, and

varName2, ..., varNameN are optional additional variables of that type. Variables can be

declared virtually anywhere in a Java program.

Variables must have a name and there are a few rules to follow when choosing variable names:

Valid Names for Variables

A variable name must start with a letter, a dollar sign '$', or the underscore character '_',

followed by any character or number. It can not contain spaces. The reserved keywords listed in

table 1.12 can not be used for variable names. Variable names are case-sensitive.

Java Reserved Keywords
abstract boolean break byte case catch

char class const continue default do

double else extends false final finally

float for goto if implements import

instanceof int interface long native new

null package private protected public return

short static super switch synchronized this

throw throws transient true try void

volatile while

Table 1.12: Reserved keywords in Java

Example 1.08: Declaring variables

Declare one variable each of type int, double, char, and two variables of type boolean.

This is an easy example. We declare our variables as follows:

int anInteger;

double aDouble;

char aChar;

boolean aBoolean, anotherBoolean;

Assigning a Value to a Variable

To assign a value to a declared variable, the assignment operator "=" is used:

 varName = [varName2 = ...] expression;

Assignments are made by first evaluating the expression on right, then assigning the resulting

value to the variable on the left. Numeric values of a type with smaller range are compatible with

numeric variables of a type with larger range (compare table 13). Variables can be declared and

assigned a value in one expression using the syntax:

 type varName = expression [, varname2 = expression2, ...];

The assignment operator looks like the mathematical equal sign, but it is different. For example, as

a mathematical expression

Java by Definition Chapter 1: Foundations Page 16 of 60

Bert G. Wachsmuth DRAFT April 2009

12 xx

is an equation which can be solved for x. As Java code, the same expression

x = 2*x + 1;

means to first evaluate the right side 2*x + 1 by taking the current value of x, multiplying it by 2,

and adding 1. Then the resulting value is stored in x (so that now x has a new value).

Value and variable types must be compatible with each other, as shown in table 1.13.

Value Type Compatible Variable Type
double double
int int, double
char char, int, double

boolean boolean

Table 1.13: Value types compatible to variable types

Example 1.09: Declaring variables and assigning values

Declare an int, three double, one char, and one boolean variable. Assign to them some suitable

values.

There are two possible solutions. Variables can be declared first and a value can be assigned to them

at a later time:

int anInteger;

double number1, number2, number3;

anInteger = 10;

number1 = number2 = 20.0;

number3 = 30;

char cc;

cc = 'B';

boolean okay;

okay = true;

Alternatively, variables can be declared and initialized in one statement:

int anInteger = 10;

double number1 = 20.0, number2 = 20.0, number3 = 30;

char cc = 'B';

boolean okay = true;

Software Engineering Tip: Variables serve a purpose and the name of a variable should

reflect that purpose to improve the readability of your program. Avoid one-letter variable

names19. Do not reuse a variable whose name does not reflect its purpose.

Whenever possible, assign an initial value to every variable at the time it is declared. If a

variable is declared without assigning a value to it, all basic types except boolean are

automatically set to 0, boolean is set to false, and all other types are set to null.20

19

 If a variable serves a minor role in a code segment (such as a counter in a loop) it can be declared using a one-

letter variable name.

Java by Definition Chapter 1: Foundations Page 17 of 60

Bert G. Wachsmuth DRAFT April 2009

Declare variables as close as possible to the code where they are used. Do not declare all

variables at once at the beginning of a program (or anywhere else).

Example 1.10: Using appropriate variable names

The code segment below computes the perimeter of a rectangle and the area of a triangle. Rewrite that

segment using more appropriate variable names and compare the readability of both segments:

double x, y, z;

x = 10.0;

y = 20.0;

z = 2*(x + y);

w = 0.5 * x * y;

This code computes the perimeter z of a rectangle with width x and length y and the area w of a

triangle with base x and height y, so the variable names should reflect that. In addition, variables

should be assigned a value when they are declared, so the code segment should be rewritten as

follows:

double width = 10.0, height = 20.0;

double perimeterOfRectangle = 2*(width + height);

double base = width;

double areaOfTriangle = 0.5 * base * height;

It is immediately clear that the formulas used are correct. Choosing appropriate variable names

clarifies the code significantly and makes it easy to locate potential problems.

Arithmetic with Numeric Types

Example 1.10 uses variables and literals to perform computations so we should explain the

arithmetic operations that Java supports:

Basic Arithmetic for Numeric Types

Java support the basic arithmetic operators + (addition), - (subtraction), * (multiplication), /

(division), and % (remainder after integer division) for numeric variables and literals. The order

of precedence is the standard one from algebra and can be changed using parenthesis.

Each operator has a left and right argument and the type of the result of the computation is

determined according to the rules outlined in table 1.14:

Left Argument Right Argument Result
int int int

int double double

double int double

double double double

Table 1.14: Resulting types of the basic arithmetic operations
21

20

 The compiler may display an error message if it encounters variables that are not explicitly initialized.
21

 Similar rules apply to the other basic types long, short, and float.

Java by Definition Chapter 1: Foundations Page 18 of 60

Bert G. Wachsmuth DRAFT April 2009

Software Engineering Tip: Do not forget that dividing two integers will result in an integer. If

an integer division does not work without a remainder, then integer division will result in the

integer part of the answer, ignoring the remainder. This is often the root of hard-to-find

programming errors, because the compiler will compile such lines fine, they will compute without

error, but the answer may not be what is intended.

Example 1.11: Basic computations

Suppose we have variables declared and initialized as follows
22

:

int i1 = 10, i2 = 3;

double x1 = 8.0, x2 = 5.0;

What are the resulting values and types of the computations:

i1 * i2;

x1 / x2;

i1 / i2;

i1 – x1;

i1 % i2;

i1 % x1;

Based on table 14 we get the following answers:

i1 * i2 = 30, an integer

x1 / x2 = 1.6, a double

i1 / i2 = 3, an integer (different from mathematical division)

i1 – x1 = 2.0, a double

i1 % i2 = 1, because i1 / i2 = 3 with remainder 1;

i1 % x1 = 2.0, because i1 / x1 = 1.0 with remainder 2.0;

Java can, of course, perform more elaborate numerical arithmetic. To use the standard mathematical

functions such as sin and cos, we must preface them with the word Math and a period, for reasons

that will become clear in chapter 3.

Advanced Arithmetic for Numeric Types

Java provides the mathematical functions specified in tables 1.15 to 1.18. To use a mathematical

function, it must be prefaced by the word Math, followed by a dot, and the function's name. Each

function returns the type double unless otherwise indicated.

Tables 15 to19 show the mathematical functions available in Java.

Trig functions and their inverses
cos(number) cosine of number (input in radians)
sin(number) sine of number (input in radians)
tan(number) tangent of number (input in radians)
acos(number) arc (inverse) cosine of number, between 0.0 and Pi
asin(number) arc (inverse) sine of number, between -Pi/2 and Pi/2
atan(number) arc (inverse) tangent of number, between -Pi/2 and Pi/2
atan2(a, b) angle between x-axis and the vector (b, a), between –Pi and Pi.

22

 Since these variables do not have an inherent meaning, it is okay to use simple variable names

Java by Definition Chapter 1: Foundations Page 19 of 60

Bert G. Wachsmuth DRAFT April 2009

Table 1.15: Trigonometric functions and their inverses

Exponential and its inverse
exp(number) e = 2.718... raised to the power of number
log(number) Natural logarithm (base e) of number

Table 1.16: Exponential and logarithm functions

Rounding and Approximation functions
ceil(number) Smallest (closest to negative infinity) value that is not less than

number and is equal to a mathematical integer
floor(number) Largest (closest to positive infinity) value that is not greater

than number and is equal to a mathematical integer
round(number) The value of number rounded to the nearest integer value.

Returns int if number is float, and long if number is double

Table 1.17: Rounding and approximation functions

Other functions
abs(number) Absolute value of number; returns same type as number
max(a, b) Greater value of a or b; returns same type as input values
min(a, b) Smaller value of a or b; returns same type as input values
pow(base, exp) The number base raised to the power of exp
sqrt(number) Square root of number
random() A random number between 0.0 and 1.0

Table 1.18: Miscellaneous functions

In addition, Java provides the following values as named constants23:

Mathematical Constants
Math.E The value that is closer than any other to e, the base of the

natural logarithms.
Math.PI The value that is closer than any other to , the ratio of the

circumference of a circle to its diameter.
Double.POSITIVE_INFINITY A representation of positive infinity of type double
Double.NEGATIVE_INFINITY A representation of negative infinity of type double
Double.NaN A representation of "Not-a-Number"

Table 1.19: Mathematical (numerical) constants

Here is an example using some of the above functions and constants.

Example 1.12: Advanced computations

Write some Java code segments to compute:

1. The circumference and area of a circle with radius 3.0.

2. The length of the hypotenuse of a right triangle given its base and height.

3. The angle in degrees, given that rAngle is the angle in radians.

4. The angle in radians, given that dAngle is the angle in degrees.

5. What is exp(4000.0)? What is 10.0/0.0? What is –10.0/0.0? What is 0.0/0.0?

1. The circumference of a circle with radius r is r2 and its area is 2r . In Java, we compute these

values as follows:

double radius = 3.0;

23

 Section 1.5 explains how to define named constants.

Java by Definition Chapter 1: Foundations Page 20 of 60

Bert G. Wachsmuth DRAFT April 2009

double circumf = 2 * Math.PI * radius;

double area = Math.PI * radius * radius;

We can also use the mathematical function pow to compute the square of the radius, as in:

double area = Math.PI * Math.pow(radius, 2.0);

2. The length of the hypotenuse of a right triangle given its base and height is the square root of the

sum of the squares of the base and of the height, or in a mathematical formula:

22 yx
, where x is the base and y is the height

In Java, we rewrite this as follows (we of course avoid using x and y as variable names):

double hyp = Math.sqrt(base*base + height*height);

assuming that base and height have already been declared and initialized, or as:

double hyp = Math.sqrt(Math.pow(base, 2.0) + Math.pow(height, 2.0));

3. Recall from trigonometry that angles can be measured in degrees (from 0 to 360) or in radians

(from 0 to 2), where an angle of 360 degrees corresponds to an angle of 2 in radians. A simple

related rates problem allows us to convert angles from one measurement to the other:

3602

dAnglerAngle

, where rAngle is in radians and dAngle is in degrees

Solving this for dAngle we get the mathematical conversion formula to convert an angle in radians to

an angle in degrees as
2

360

rAngle
dAngle . Our first attempt to convert this to Java code might be:

double dAngle = rAngle * 360.0 / 2 * Math.PI;

But that is not correct because division and multiplication have equal precedence. Java therefore

performs this computation from left to right, taking the value of rAngle, multiplying by 360, dividing

by 2, and then multiplying the result by instead of dividing by it. That is not what we want so we

need to use parenthesis:

double dAngle = rAngle * 360.0 / (2*Math.PI);

4. Similarly, to convert angles the from degrees to radians we use the Java code:

double rAngle = dAngle * 2 * Math.PI / 360.0;

24

5. The value of exp(4000.0) must be a very large number, possibly larger than the largest double.

Similarly, 10.0/0.0 is mathematically illegal because we can not divide by 0. It is not clear what Java

makes of these expressions. but we can embed the code into a complete program, using the statement

System.out.println to display the values on the screen.

public class FunnyNumbers

{ public static void main(String args[])

 { double largeNum = Math.exp(4000.0);

 double posDivZero = 10.0 / 0.0;

 double negDivZero = -10.0 / 0.0;

24

 Both conversion formulas can be reduced but you should keep the formulas that are easiest to understand.

Java by Definition Chapter 1: Foundations Page 21 of 60

Bert G. Wachsmuth DRAFT April 2009

 double zeroDivZero = 0.0/0.0;

 System.out.println(largeNum);

 System.out.println(posDivZero);

 System.out.println(negDivZero);

 System.out.println(zeroDivZero);

 }

}

When you type this file, save it under the name FunnyNumbers.java, compile it with the javac

compiler, and run it by typing java FunnyNumbers, it will produce the results shown in figure 1.20.

Figure 1.20: Execution results for FunnyNumbers

This means that Java can, to some extend, deal with numbers that other run-time systems have

problems with. It would be interesting to determine whether other operations can be performed with

these values, i.e. can you add / subtract / multiply / divide the values infinity and NaN? We will

leave this discussion as an exercise.

Shortcuts and Type-Casting

Certain types of computations occur so frequently that Java has created shortcut notations for them:

Increment and Decrement Operators

Java provides the increment operator ++ and the decrement operator --. Both can be used in

front of (prefix) or after a variable (postfix) of type int, double, or char.

 If used in front of a variable (prefix notation), first the value of the variable is incremented

(or decremented), then the new value is used in the expression.

 If used after a variable (postfix notation), first the old value is used in an expression, then it is

incremented (or decremented).

Example 1.13: Prefix and postfix increment and decrement

What is the output of the program below,:

public class IncDecTest

{ public static void main(String args[])

 { int j, k;

 System.out.println("Group 1:");

 k = 1; j = k++;

 System.out.println(j);

 System.out.println(k);

 System.out.println("Group 2:");

 k = 1; j = ++k;

Java by Definition Chapter 1: Foundations Page 22 of 60

Bert G. Wachsmuth DRAFT April 2009

 System.out.println(j);

 System.out.println(k);

 System.out.println("Group 3:");

 k = 1;

 System.out.println(k++);

 System.out.println(++k);

 System.out.println(k--);

 System.out.println(k);

 }

}

The code declares two integer variables j and k and is divided into three groups.

 The first group sets k to 1, computes j = k++

by first assigning the value of k (which is 1) to

j, then incrementing k by 1. Therefore j = 1

and k = 2.

 The second group resets k to 1, then computes

j = ++k by first incrementing k by one, then

assigning the result to j. Therefore j and k are

equal to 2.

 The third group resets k to 1. The current

value of k is displayed, then incremented by

one. Then it increments k before using it and

displays the new value (now 3). Finally, that

value is displayed (again 3), then decremented

by one, and in the last line the final value of k

is displayed as 2.

Figure 1.21: Testing increment/decrement

Software Engineering Tip: The statement k++ computes faster than the equivalent statement k =

k + 1, but overusing the increment (decrement) operators results in code that is difficult to

understand. Use increment (decrement) operators only in postfix notation, and do not use increment

(decrement) and assignment operators in one statement.

In addition to the increment and decrement operators, Java provides the following shortcuts:

Computational Shortcut Notation

The following computational shortcuts can be used in Java:

aNumber += anotherNumber; <=> aNumber = aNumber + anotherNumber;

aNumber -= anotherNumber; <=> aNumber = aNumber – anotherNumber;

aNumber *= anotherNumber; <=> aNumber = aNumber * anotherNumber;

aNumber /= anotherNumber; <=> aNumber = aNumber / anotherNumber;

aNumber %= anotherNumber; <=> aNumber = aNumber % anotherNumber;

Example 1.14: Shortcut evaluation

What is the value of the variables after the following code executes:

int k = 10;

Java by Definition Chapter 1: Foundations Page 23 of 60

Bert G. Wachsmuth DRAFT April 2009

double x = 10.0, y = 20.0;

k /= 4;

x += 10.0;

y *= y;

The initial values of k and x are 10, y has the value of 20.

 The expression k /= 4 is equivalent to k = k / 4, so it divides k by 4 and assigns the result

to k again. Therefore, k is 2 (because of integer division).

 The expression x += 10.0 adds 10.0 to the original value of x, then assigns that new value

to x. Hence, x is 20.

 The statement y *= y means y = y * y, so that y is assigned the square of its original

value. Hence, y is 400.0.

Software Engineering Tip: The += and -= shortcuts are very common. Use them from the

beginning to get acquainted to them.

Java also provides easy utility operations to convert data from one type into another one:

Simple Typecasting or Conversion

Typecasting is the process of changing the type of a variable or value. In general you can

typecast typeA into typeB if typeA is a special case of typeB using the syntax:

 (typeB)expressionOfTypeA;

Numeric types of larger range can be typecast into types with smaller ranges, but you will loose

accuracy. Numeric values of smaller range are automatically typecast into types with larger

range if necessary.

Example 1.15: Typecasting to double

Define two integers int1 and int2 and a double aDouble, then write some code segment that can

divide int1 by int2 and store the mathematically correct result in aDouble.

We have already seen that if int1 / int2 results in another integer. Storing that in a double:

double aDouble = int1 / int2;

does not work, because evaluation occurs first on the right side, producing an integer, then the result

is assigned to aDouble and automatically typecast to a double. We must make sure that we force the

integers to become doubles before we divide them:

double aDouble = ((double) int1) / ((double) int2);

This first typecasts (converts) the integers to doubles, then performs a division with doubles, and

finally stores the resulting double value in our variable aDouble.25

25

 In this case it is sufficient to typecast only one of the integers to a double. Alternatively, we could have multiplied

one of the integers by a double before dividing: (1.0 * int1) / int2

Java by Definition Chapter 1: Foundations Page 24 of 60

Bert G. Wachsmuth DRAFT April 2009

Using typecasting can have strange consequences.

Example 1.16: Typecasting large range to small range types

Below is a simple program that uses typecasting to convert large-range types to small-range types:

public class Test

{ public static void main(String args[])

 { double aDouble = 10.0 / 3.0;

 long aLong = 2147483647L + 1L;

 int intFromDouble = (int)aDouble;

 int intFromLong = (int)aLong;

 System.out.println(aDouble);

 System.out.println(aLong);

 System.out.println(intFromDouble);

 System.out.println(intFromLong);

 }

}

If you compile and execute this program, you will see the output below. Explain.

Figure 1.22: Unexpected type-casting results

The first two numbers are the computed values for aDouble and aLong. Because double values are

not exact, the last digit is not mathematically correct. When we typecast aDouble into the integer

intFromDouble, the decimals are cut off and the value of intFromDouble is 3. As far as the value of

aLong is concerned, its mathematical value is 2147483648. That is within the range of a long but

when type-cast into an int it is one more than the largest possible int. As a result, the value "wraps

around" to the other side of the range of an int, and the value of intFromLong becomes

-2147483648, which is the smallest possible int value and not at all what we expected.

Software Engineering Tip: Use explicit typecasting even if implicit (automatic) typecasting

would work. In other words, use statements such as double x = (double)(i * j) instead of

double x = i * j, assuming that i and j are integer types.

Avoid typecasting from larger-range numeric types into smaller-range types if possible, or use

the mathematical functions ceil, floor, and round (see table 17) to clarify the potential loss of

accuracy. In other words, use statements such as int i = (int)Math.round(x) instead of int i

= (int)x, assuming that x is a double type.26

26

 If long l = 2147483647L + 10L then (int)l results in –2147483639 while (int)Math.round(l) evaluates to

2147483647. Both are mathematically incorrect, but the second version does at least not produce a negative number.

Java by Definition Chapter 1: Foundations Page 25 of 60

Bert G. Wachsmuth DRAFT April 2009

Logic and Comparison

Java can also perform computations with the literals true and false and with boolean variables

and expressions using the operators and, or, and not.

Boolean Operators

To combine boolean values and variables, Java provides the following operators:

&& (logical "and"), || (logical "or"), ! (logical "not")

Multiple logical statements connect by || and && are evaluated left to right unless parenthesis

are used. Evaluation stops as soon as the resulting boolean value can be determined.

The result of using and and or can be determined from table 1.23.

Operation Expression A Expression B Result
A && B A = true B = true true

A = true B = false false

A = false B = true false

A = false B = false false

A || B A = true B = true true

A = true B = false true

A = false B = true true

A = false B = false false

Table 1.23: Truth table for and and or operators

Most of the time these operators are used to combine tests or comparisons so we need to know how to

compare the basic data types.

Comparison Operators and Tests

To compare two numerical or character expressions, tests of the form (expression operator

expression) are used, where operator is one of the following:

 > tests whether the left side is larger than the right side

 >= tests whether the left side is larger than or equal to the right side

 < tests whether the left side is less than then right side

 <= tests whether the left side is less than or equal to the right side

 == tests whether the left side is equal to the right side

 != tests whether the left side is not equal to the right side

The result of a test is the boolean value true or false. Tests can be combined with the operators

&& (and), || (or), and ! (not) and prioritized using parenthesis.
27

These operators are used in testing the relationship between two expressions, as in the following

example:

27

 Characters are compared according to the order in the Unicode table (which is the same as alphabetical order for

English letters, with capital letters before lowercase ones).

Java by Definition Chapter 1: Foundations Page 26 of 60

Bert G. Wachsmuth DRAFT April 2009

Example 1.17: Simple tests

Suppose we have defined int x = 10, double y = 11, and double z = 12.0. Which of the

following tests return true?

(x < z)

(y >= z)

((x+1) == y)

((x / 3) == (z / 4))

The first test asks the question: is 10 (= x) less than 12 (= z) and therefore evaluates to true. The

second test, similarly, evaluates to false. For the third test, first (x + 1) is evaluated to 11, then

checked for equality against the value of y. That comparison returns true even though one value is

of type int, the other of type double. Finally, the last line contains (x / 3) which – because it is

integer division – evaluates to 3. Since that's the same as on the right side (12 / 4 = 3), the test

evaluates to true.

Software Engineering Tip: It is a common mistake to use the assignment operator "=" to try

to compare two expressions for equality instead of the double-equal operator "==". The compiler

will flag this as an error and will not compile the code.28 Remember that "=" looks like a

mathematical equal symbol but stands for the assignment operator, whereas "==" is used

exclusively to check expressions for equality.

Using the double-equal operator to check double values for equality can pronounce a

mathematical equality as false because double values are inexact. For example, if double x =

10.0/3.0 and double y = 1.0/3.0*10.0, then (x == y) evaluates to false! Avoid using double-

equal comparisons for double values, use suitable inequalities instead, if possible.

The next example illustrates that evaluation of a boolean expression stops as soon as the final value

can be determined.

Example 1.18: Tests with short-circuit boolean evaluation

Does the following code always work or will it generate a "run-time error" such as "division by zero" if

x is equal to zero?

boolean okay = ((x != 0) && (Math.abs(1/x) < 5));

If x is not zero, then (x != 0) evaluates to true. Since the connection is via && (and) Java needs to

evaluate the second part before being able to decide on the value of the entire expression.

If x is equal to zero then the (x != 0) results in false. Because of the && (and) the entire expression

must then evaluate to false regardless of the remaining part and Java does not perform the second

test. No division by zero occurs.

Java also provides a comparison operator to check whether a variable is of a certain (non-basic) type.

28

 In C++, unfortunately, an expression such as (x = y) compiles but does not check x and y for equality.

Java by Definition Chapter 1: Foundations Page 27 of 60

Bert G. Wachsmuth DRAFT April 2009

The instanceof Operator

The instanceof operator checks whether a reference variable is of a particular type. If so, it

returns true, otherwise false. It is used as follows:

 (varName instanceof classType)

Both varName and classType must be class (reference) types, not primitive types.
29

1.3. Basic Program Control

Until now our code samples have been sequential: the JVM starts executing a program at its default

program entry point, then works through one line after the other until it reaches the last line in that

group (and therefore in the program). Of course that's not all there is and Java provides several ways

to control which lines should execute, under what conditions, and how often.

Basic program control falls into two groups: flow control and loop control. Flow control lets you

include or exclude lines or blocks of code based on certain conditions while loop control governs how

often blocks of code execute.

Block of Code

A block of code in Java consists either of a single Java statement or of a collection of statements

grouped together using the grouping symbols { and }. Lines belonging to the same block should

be properly indented in your source code.

Conditional Execution: The if and switch Statements

The basic flow control statement that Java provides is the if statement, which has three different

forms. Here is the easiest incarnation:

The Simple if Statement

A simple if statement specifies the condition under which a certain block of code executes, using

the syntax

 if (condition)

 blockOfCode;

where condition is an expression of boolean type, such as a test. If condition evaluates to

true the blockOfCode executes, otherwise execution will skip that block. In either case,

execution resumes immediately after the blockOfCode.

29

 This operator will be useful only after introducing classes in chapter 3. It has no significance for the basic data

types mentioned in this chapter and is listed here for completeness only.

Java by Definition Chapter 1: Foundations Page 28 of 60

Bert G. Wachsmuth DRAFT April 2009

code code(condition) false

blockOfCode

true

Figure 1.24: Representation of simple if statemet

We already know how to create logical tests resulting in a boolean value so here are some examples:

Example 1.19: Simple if statement

Assume that a double variable x has been declared and initialized to an unknown value. Write some

code that will print the words "x is positive" on the screen if x is positive.

The logical test is clearly (x > 0) so the corresponding if statement looks like:

if (x > 0)

 System.out.println("x is positive");

There is only one line following the if statement so that no grouping brackets are necessary.

Example 1.20: Invalid simple if statement

Consider the following program code (where x has previously been declared as a double variable of

unknown value):

if (x == 0.0)

 System.out.println("x is zero");

 System.out.println("Can not divide by x");

What is displayed if x is equal to 0.0? How about if x = 10.0? Is this code what was (most likely)

intended? If not, fix the code accordingly.

If x is equal to 0.0, the test evaluates to true and the segment displays the following:

x is zero

Can not divide by x

If x is equal to 10.0, the test for the if statement fails, skipping its code block. Since we are not

using grouping parenthesis only the single line immediately following the if statement is considered

part of the skipped block. Therefore, the screen shows:

Can not divide by x

But that is not correct, and probably not what the programmer intended. The fact that the last line

is indented and appears to be part of the if statement is irrelevant, only grouping symbols can group

statements together. The code, as the programmer probably meant it to write, looks as follows:

if (x == 0.0)

{ System.out.println("x is zero");

 System.out.println("Can not divide by x");

}

Java by Definition Chapter 1: Foundations Page 29 of 60

Bert G. Wachsmuth DRAFT April 2009

Another form of the if statement is used to make decisions in an "either-or" situation:

The if-else Statement with Alternative

An if-else statement with alternative lets you use a boolean condition, usually a test, to

determine which of two blocks of code executes, using the syntax:

 if (condition)

 blockOfCode1;

 else

 blockOfCode2;

If condition returns true, the blockOfCode1 executes, otherwise blockOfCode2 executes.

After either of the two blocks has executed, the lines immediately after the else block continue to

execute.

code

blockOfCode1

blockOfCode2false(condition) code

true

Figure 1.25: Representation of if-else statement

Example 1.21: Simple if-else statement

If x is a double whose value is not known, write some code that will print out "x is positive" or

"x is not positive", depending on the value of x.

We have to decide between two alternatives so we use an if-else statement. Our test is (x > 0), as

before, and the code looks like this:

if (x > 0)

 System.out.println("x is positive");

else

 System.out.println("x is not positive ");

Example 1.22: Invalid if-else statement

Consider the following lines of code, where x and y have previously been declared as double:

if ((x*x – 10) >= 0.0)

 y = Math.sqrt(x*x – 10);

 System.out.println("y = " + y);

else

 y = 0;

 System.out.println("Can not take square root.");

What is the output if this code executes, assuming that x = 2.0?

This is a trick question, because a program containing that code does not execute. In fact, it does not

even compile:

Java by Definition Chapter 1: Foundations Page 30 of 60

Bert G. Wachsmuth DRAFT April 2009

Figure 1.26: if without else error message

The compiler is complaining that the else is not part of an if, even though our code seems to have a

matching one. The mistake is that the code did not use any grouping brackets and the compiler

interprets it as a simple if statement instead of an if-else statement. The one-line code block y =

Math.sqrt(x*x – 10) is part of the if statement and execution will resume at the line

System.out.println("y = " + y). Then the compiler encounters an else statement that does not

belong to an if. To correct the code, we need to insert grouping brackets as follows:

if ((x*x – 10) >= 0.0)

{ y = Math.sqrt(x*x – 10);

 System.out.println("y = " + y);

}

else

{ y = 0;

 System.out.println("Can not take square root.");

}

There is a final version of the if statement that allows choosing between multiple alternatives:

The Nested if-else-if Statement

A nested if-else-if statement lets you choose which of N blocks of code plus one optional block

of code executes, based on boolean conditions or tests. The syntax is:

 if (condition1)

 codeBlock1;

 else if (condition2)

 codeBlock2;

 ...

 else if (conditionN)

 codeBlockN;

 [else

 optionalBlock;]

If condition1 evaluates to true execute codeBlock1, otherwise check condition2. If

condition2 evaluates to true execute codeBlock2, otherwise check condition3. Continue in

this fashion. If conditionN evaluates to true, execute codeBlockN, otherwise execute

optionalBlock, if defined, or continue with regular execution.

The k
th
 block of code executes if all conditions prior to the k

th
 one evaluate to false and the k

th

one is true. The optionalBlock of code executes if all conditions evaluate to false.

Java by Definition Chapter 1: Foundations Page 31 of 60

Bert G. Wachsmuth DRAFT April 2009

code

blockOfCode2

blockOfCode1

true

(condition1)

blockOfCode3

(condition2) optionalBlock(condition3) codefalse false false

true

true

Figure 1.27: Nested if-else-if statement with 3 code blocks and an optional block

Example 1.23: Converting numeric scores to letter grades

Suppose a double variable score contains a number between 0 and 100, reflecting a student's

performance on a test. Based on that score write a code segment that displays the corresponding letter

grade.

This is a situation where we have to choose among multiple alternatives. If the score is 90 or better,

the letter grade is A, if the score is between 80 and 90, the letter grade is B, and so on. The code

reflecting this situation could look as follows:

if (score >= 90)

 System.out.println("Letter grade: A");

else if ((score < 90) && (score >= 80.0))

 System.out.println("Letter grade: B");

else if ((score < 80) && (score >= 70.0))

 System.out.println("Letter grade: C");

else if ((score < 70) && (score >= 60.0))

 System.out.println("Letter grade D");

else if (score < 60)

 System.out.println("Letter grade: F");

This code is technically correct, but it contains redundant tests. Our definition states that the only

way the second block of a nested if-else statement can execute is if the first condition evaluates to

false and the second to true. Therefore the second condition does not need to test for (score < 90)

because if the second condition is reached, the first one must have failed so that we know that at that

point score must be less than 90. The same is true for the remaining tests so that the improved

version of the code looks as follows:

if (score >= 90)

 System.out.println("Letter grade: A");

else if (score >= 80.0)

 System.out.println("Letter grade: B");

else if (score >= 70.0)

 System.out.println("Letter grade: C");

else if (score >= 60.0)

 System.out.println("Letter grade D");

else

 System.out.println("Letter grade: F");

Software Engineering Tip: It is easy to decide which form of an if statement applies:

 If something needs to happen or not, use a simple if statement

 If a decision between 2 alternatives is to be made, use the if-else statement

 If you need to decide between 3 or more alternatives, use the nested if-else-if statement

Java by Definition Chapter 1: Foundations Page 32 of 60

Bert G. Wachsmuth DRAFT April 2009

If you are using a nested if-else-if statement and the condition includes the && (and) operator,

you may be performing redundant tests and you should try to rephrase your statement, if

possible.

Java provides an additional flow control statement called switch. That statement has a more

complicated syntax and is one of the few language elements in Java that has not been properly

modernized. Here is the definition and syntax:

The switch Statement

The switch statement lets you choose between multiple alternatives using the syntax:

 switch (expression)

 { case value1: alternative1;

 break;

 case value2: alternative2;

 break;

 ...

 case valueN: alternativeN;

 break;

 [default: defaultAlternative;

 break;]

 }

where expression must be of type int or char. If expression equals value1, alternative1

executes, if expression equals value2, alternative2 executes, and so on. If no value matches

expression, the defaultAlternative executes. Multiple distinct values can be handled using:

 case value1: case value2: ... case valueM: statement(s);

 break;

Example 1.24: Converting letter grades to numeric scores

Assuming that grade is a character variable containing a letter grade (A through F), create a code

segment using a switch statement that displays the numeric range for that grade.

The expression that determines which of several alternatives should be chosen is of type char so a

switch statement applies. We handle upper- and lowercase letters in one alternative using the code:

switch (grade)

{ case 'A': case 'a': System.out.println("90% or better");

 break;

 case 'B': case 'b': System.out.println("between 80 and 89.99%");

 break;

 case 'C': case 'c': System.out.println("between 70 and 79.99%");

 break;

 case 'D': case 'd':

 case 'F': case 'f': System.out.println("less than 70%");

 break;

 default: System.out.println("invalid grade");

}

This switch statement will display, for example, "90% or better" if grade is either 'A' or 'a'.

Java by Definition Chapter 1: Foundations Page 33 of 60

Bert G. Wachsmuth DRAFT April 2009

Software Engineering Tip: A switch statement has a complicated syntax and is limited to

handle distinct alternatives of int or char expressions. Since a nested if-else-if statement

can always replace a switch statement, you should avoid using switch altogether.30.

Example 1.25: Replacing if-else-if code by switch

Can a switch statement be used to replace the if-else-if code in example 1.23?

Recall the code for example 1.23, where score was of type double:

if (score >= 90)

 System.out.println("Letter grade: A");

else if (score >= 80.0)

 System.out.println("Letter grade: B");

else if (score >= 70.0)

 System.out.println("Letter grade: C");

else if (score >= 60.0)

 System.out.println("Letter grade D");

else

 System.out.println("Letter grade: F");

This code makes a decision based on the value of score. It can not be converted to a switch

statement because score is not of type int or char. Even if score was of type int, a switch

statement does not work, since it can only handle finitely many distinct possibilities, not ranges of

numbers.

Example 1.26: Replacing switch by if-else-if code

Can a suitable if-else-if statement be used to replace the switch code in example 1.24? If so,

provide that replacement code.

The following if-else-if statement has the same functionality as the switch statement in example

1.24:

if ((grade == 'A') || (grade == 'a'))

 System.out.println("90% or better");

else if ((grade == 'B') || (grade == 'b'))

 System.out.println("between 80 and 89.99%");

else if ((grade == 'C') || (grade == 'c'))

 System.out.println("between 70 and 79.99%");

else if ((grade == 'D') || (grade == 'd') ||

 (grade == 'F') || (grade == 'f'))

 System.out.println("less than 70%");

else

 System.out.println("invalid grade");

We are using the operator || with an if-else-if statement but no redundant tests are performed.

Loop Control: for, while, and do

30

 A switch statement can always be replaced by corresponding if-else-if blocks, but the converse is not true. Not

every if-else-if statement can be converted to a switch statement.

Java by Definition Chapter 1: Foundations Page 34 of 60

Bert G. Wachsmuth DRAFT April 2009

The final basic programming structure we need is a loop. So far we can decide which code should

execute based on the outcome of various tests, but we cannot execute code repeatedly without retype

it. A simple program to display the numbers from 1 to 1000 would be a major exercise in typing at

this stage.

Loop

A loop is a language structure that causes a block of code to repeat until certain conditions are

met. A valid loop has three elements:

 The test: a condition that determines whether a loop should continue or end.

 The initialization: the variable(s) used in the test must be initialized before the loop begins.

 The modification: the variable(s) used in the test should be modified inside the loop.

Java offers three types of loop constructions. The simplest is a for loop:

The for Loop

A for loop combines initialization, testing, and modification in one line, separated by

semicolons. It applies if the number of times the loop should execute is known and has the syntax:

 for (initialization; test; modification)

 codeBlock;

where initialization initializes a variable called the loop counter, test involves the loop

counter in a boolean condition, and modification modifies the value of the loop counter.

When the for statement is first encountered, initialization is performed, then test evaluates.

If test evaluates to true the codeBlock executes. At the end of codeBlock the modification is

performed and test is evaluated again. The loop continues in this fashion until test is false.
31

code code(test)initialization

codeBlockmodification

false

true

for (initialization; test; modification)

Figure 1.28: Representation of a for loop

The simplest type of for loop counts the number of times that codeBlock should execute:

Example 1.27: Simple for loop

Write a program that produces the statement "I like Java" 20 times (without, of course, writing that

line 20 times "by hand").

We know we want our loop to execute 20 times, so one possible implementation is:

for (int i = 0; i < 20; i++)

31

 Initialization, test, and modification could be blank, but semicolons must be present. Initialization and

modification could involve more than one variable (confusing): for (int i=0, j= 0; (i*j<10); i++,j++) ...

Java by Definition Chapter 1: Foundations Page 35 of 60

Bert G. Wachsmuth DRAFT April 2009

 System.out.println("I like Java");

We declare the variable i as an integer and initialize it to 0. The test checks if i is less than 20, in

which case the loop continues. The modification part increments i by one each time the block

executes so that the loop stops if i is incremented past 19. Therefore the statement "I like Java"

displays exactly 20 times, with i running from 0 to 19.

Other for loops would work just as well:

for (int i = 1; i <= 20; i++)

 System.out.println("I like Java");

for (int i = 200; i < 220; i++)

 System.out.println("I like Java");

For a complete program we embed one of these loops in the standard framework for Java programs:

public class SimpleCountingLoop

{ public static void main(String args[])

 { for (int i = 0; i < 20; i++)

 System.out.println("I like Java");

 }

}

Software Engineering Tip: Do not modify the loop counter of a for loop inside the loop. It

should only be changed in the modification part of the for statement. While the compiler does

not have a problem with that, it makes your code difficult to understand.

Loops can of course perform some useful action:

Example 1.28: Finding running total

Write a complete program to find the sum of the first 200 positive integers.

The program clearly involves a loop. We use a for loop with a loop counter i whose value runs from 1

to 200. Before the loop starts, we declare a variable sum and initialize it to 0. Each time the value of i

changes in the loop, we add it to the running sum using the expression sum = sum + i, or more

appropriately the equivalent shortcut notation sum += i (first the right side evaluates, then the

result is stored back in sum).

public class SumOfIntegers

{ public static void main(String args[])

 { int sum = 0;

 for (int i = 1; i <= 200; i++)

 sum += i;

 System.out.println(sum);

 }

}

sum = 0

Display sum

(i <= 200)

i = 1

sum = sum + i

i++

false

true

for loop

This program produces the number 20100 as the answer but we need to make sure that the answer

is correct. We certainly do not want to repeat the calculation by hand but we can modify the program

Java by Definition Chapter 1: Foundations Page 36 of 60

Bert G. Wachsmuth DRAFT April 2009

to add only the first 10 numbers. We can check that sum manually and if the program produces the

correct answer we could assume it works correctly for larger sums.

That is an approach that is taken often to verify a program.32 A program is executed for a few simple

cases where the correct answer is known or can be computed manually. If the program produces the

right answers in these test cases it is assumed that the answer for more complicated cases is correct

as well.

In our case we actually can add the first 200 numbers by hand. We write all 200 numbers down twice

(at least the first and last few numbers), once in increasing and again in decreasing order:

1 + 2 + 3 + 4 + ... + 197 + 198 + 199 + 200 = sum

200 + 199 + 198 + 197 + ... + 4 + 3 + 2 + 1 = sum

201 + 201 + 201 + 201 + ... + 201 + 201 + 201 + 201 = 2*sum

The numbers in each column add up to 201, and there are 200 columns. Therefore the third row adds

up to 200 * 201, which in turn is twice the desired sum. Therefore:

2 * sum = 200 * 201, or equivalently, sum = 200 * 201 / 2 = 100 * 201 = 20100

We have indeed verified the answer that our program produced. Using the same technique it is easy

to show that in general:33

The sum of the integers from 1 to N is equal to
2

)1(NN

Software Engineering Tip: The problem of finding a running total is very frequent in writing

computer programs. The technique is almost always the same as the one used in example 1.28:

initialize a variable such as sum outside the loop to 0 and employ a shortcut notation similar to

sum += var inside the loop.

Example 1.29: Finding running totals with different step sizes

Write some code segments to find the sum of all positive even integers less than 500 and the sum of all

positive integers divisible by three that are less than 500.

Each code segment involves a for loop and computes a running total. We could use the %, or

"modulo" operator to determine if a number is even or not:

 If (i % 2) is 0, then i must be even, otherwise it must be odd.

Our first attempt to find the sum of the even numbers might be:

int evenSum = 0;

for (int i = 1; i < 500; i++)

{ if ((i % 2) == 0)

 evenSum += i;

32

 Compare section 2.4.
33

 This formula is attributed to the mathematician F. E. Gauss. While Gauss was in grade school, a teacher asked his

students to add the first 100 integers, expecting to keep the students busy for some time. Instead, Gauss was reported

to come up with the above trick and produced the answer in a few seconds, much to the teacher's surprise.

Java by Definition Chapter 1: Foundations Page 37 of 60

Bert G. Wachsmuth DRAFT April 2009

}

But odd numbers are not added to evenSum and the loop runs twice as long as necessary. In a for

loop we can increment the loop counter variable any way we choose so we can rewrite this code as

follows:

int evenSum = 0;

for (int i = 2; i < 500; i+=2)

 evenSum += i;

To find the sum of multiples of three that are less than 500, we could choose yet another alternative:

int threeSum = 0;

for (int i = 1; i < 500/3; i++)

 threeSum += (3*i);

But now we tried to be too smart and our code will produce a wrong answer. 500 / 3 = 166 because

of integer division so that the last value added to threeSum is 165 * 3 = 495. But the last number

divisible by three that is less then 500 is 498 and that number will be missing from the sum. We

could us a similar approach as for the even numbers to get it right, or simply replace the strict

inequality < by <= in the test of the for loop (details left as an exercise).

Here is one last example that illustrate that a for loop may sometimes not execute at all, and

sometimes a little too often:

Example 1.30: Over- or underperforming loops

How often do the code blocks inside each of the following for loops execute?

int x = 15;

for (int i = 1; ((i + x) < (x – i)); i++)

 System.out.println(i);

for (int i = 1; (i != 10); i+=4)

 System.out.println(i)

We trace the values of the variables and expressions manually to determine the answer:

Statement Values
int x = 15 x = 15, i is unknown

(initialization) int i = 1 x = 15, i = 1

(test) (i + x) < (x – i) x = 15, i = 1, (16 < 14) = false

Since the test immediately evaluates to false and is performed before the code block in the for loop

executes, the System.out.println statement never executes.

Statement Values

(initialization) int i = 1 i = 1

(test) (i != 10) i = 1, (1 != 10) = true
System.out.println(i) displays 1

(modifier) i += 4 i = 5

(test) (i != 10) i = 5, (5 != 10) = true
System.out.println(i) displays 5

(modifier) i += 4 i = 9

Java by Definition Chapter 1: Foundations Page 38 of 60

Bert G. Wachsmuth DRAFT April 2009

(test) (i != 10) i = 9, (9 != 10) = true
System.out.println(i) displays 9

(modifier) i += 4 i = 13

(test) (i != 10) i = 13, (13 != 10) = true
System.out.println(i) displays 13

etc. etc.

The value of i is never equal to 10 so theoretically the loop never stops. On a computer, loops such as

this will eventually terminate because the system is running out of resources (or someone turns the

off switch). Such loops are called infinite loops and they are a common programming error.

Software Engineering Tip: Loops are frequently programmed incorrectly:

 The condition that should end the loop is never met, resulting in an "infinite" loop.

 The loop exceeds the number of times it is supposed to execute by one or more.

 The loop falls short by one or more in the number of times it is supposed to execute.

 The loop never starts executing, due to incorrect or missing initialization.

Your should always double-check whether a loop executes the intended number of times by

checking the values of all variables manually for easy sample situations. Use inequalities instead

of equalities in the test condition of a loop, especially if double values are involved.

The second and most flexible loop structure that Java offers is called a while loop.

The while Loop

A while loop usually places any initialization before the actual loop and the modification

statement inside the loop. The test together with the keyword while is the essential and

mandatory part of the loop, using the syntax:

 while (test)

 codeBlock;

The test is performed each time before codeBlock executes and must evaluate to true before

codeBlock executes.

code code(test)

codeBlock

false

true

while loop

Figure 1.29: Representation of a while loop

Example 1.31: Replacing for loop with while

In example 1.29 we created a loop that found the sum of all positive even integers less than 500.

Rewrite that code, using a while loop instead of a for loop.

Recall the prior code:

Java by Definition Chapter 1: Foundations Page 39 of 60

Bert G. Wachsmuth DRAFT April 2009

int evenSum = 0;

for (int i = 2; i < 500; i+=2)

 evenSum += i;

For a while loop we move the initialization int i = 2 in front of the loop and the modification i+=2

inside the loop. The test becomes part of the while statement:

int evenSum = 0;

int i = 2;

while (i < 500)

{ evenSum += i;

 i += 2;

}

Software Engineering Tip: A while loop can always replace a for loop so you could, in

principle, use only while loops.34 But a for loop is less complicated and more compact, therefore

less error prone, so you should use a for loop whenever possible.

Here is a loop that is difficult to reproduce using a for statement:

Example 1.32: Testing for prime number

If x is an unknown, positive integer, write some code that tests if x is a prime number.

Recall that a number is prime if the only integers that divide it without remainder are 1 and itself.

The easiest prime numbers are 1, 2, 3, 5, and 7, but not 9. To check whether an unknown number x is

prime, we divide x by every integer between 1 and x. If the division yields a zero remainder, the

number can not be prime. Here is our code segment (assuming that x has previously been declared

and initialized):

int i = 2;

while ((i < x) && ((x % i) != 0))

 i++;35

if (i >= x)

 System.out.println("The number is prime");

else

 System.out.println("The number is not prime");

In other words, we start with i = 2 and continue our loop as long as i < x and the remainder after

dividing x by i is not 0. Inside our loop we increment i by one. The loop exits for two reasons:

(i >= x) or (x % i) == 0

Since i is incremented by one inside the loop, it will end for sure because of the first condition. When

the loop is over, we check which of the two conditions made it stop:

 If (i >= x) after the loop exits, we have not found a number i that is less than x and

gave a zero remainder, so that x must be prime.

34

 A for loop in Java can replace a while loop because initialization and modification can be empty.
35

 This loop converted to a for loop could look as follows:
 int i = 2;

 for (; ((i < x) && ((x % i) != 0)); i++);

Java by Definition Chapter 1: Foundations Page 40 of 60

Bert G. Wachsmuth DRAFT April 2009

 If (i < x) after the loop exits, x must have been evenly divisible by some i that is less

than x so that x can not be prime.

We can extend this example to create a program using both a for and a while loop:

Example 1.33: Sum of primes

Find the sum of all prime numbers less than 10000.

We have already seen the code for finding a running total (example 1.28) and for determining

whether a number is prime (example 1.32). The code that solves this example combines both

strategies:

int primeSum = 0;

for (int x = 0; x < 10000; x++)

{ int i = 2;

 while ((i < x) &&

 ((x % i) != 0))

 i++;

 if (i == x)

 primeSum += x;

}

System.out.println(primeSum);

primeSum = 0

i < x and i does

not divide x
i++true

x = 0

x < 1000 i = 2

x++

x prime ? primeSum += x

display primeSum

false

true

true

false

false

for loop

while loop

This code is inefficient, but it works – almost. To see the error we insert a System.out.println

statement that shows the prime numbers found in addition to adding them to the running total. We

also verify the code by finding the sum of all primes less than 20, which we can check with a

calculator. A complete test program looks as follows:

public class PrimeFinder

{ public static void main(String args[])

 { int primeSum = 0;

 for (int x = 0; x < 20; x++)

 { int i = 2;

 while ((i < x) && ((x % i) != 0))

 i++;

 if (i == x)

 { System.out.println("Prime: "+x);

 primeSum += x;

 }

 }

 System.out.println(primeSum);

 }

}

Figure 1.30: Finding the sum of primes

When we run this program (as shown in figure 1.30) we see the problem: the first prime number 1 is

not added to the total. We leave it as an exercise to fix the mistake.

Java by Definition Chapter 1: Foundations Page 41 of 60

Bert G. Wachsmuth DRAFT April 2009

Java offers a third loop control structure, the do loop.

The do Loop

A do loop usually places any initialization before the actual loop and the modification statement

inside the loop. The keywords do at the beginning of the codeBlock and while at the end are the

essential and only mandatory parts, using the syntax:

 do

 { codeBlock;

 }

 while (test);

The test is performed each time after codeBlock executed. If the test evaluates to false the

codeBlock stops executing. In a do loop codeBlock executes at least once.

code code(test)codeBlock false

do loop

tru e

Figure 1.31: Representation of a do loop

A do loop is useful if the modification needs to occur before the test, because testing takes place at

the end. But since it is easy to replace a do loop by a functionally equivalent while or for loop, we

will not need do loops in this text.

Software Engineering Tip: We know three loop control structures, for, while, and do.

 The for loop is easiest to use. Use it if the number of times the loop should execute is known

or can be computed easily. It should be your preferred looping structure.

 A while loop is the most general loop and can replace all other loops. Use it if a for loop is

not applicable.

 A do loop is useful only if modification needs to occur before the loop test condition. A do loop

always executes at least once.

Java provides two additional flow control statements called break and continue.

break and continue

A break statement can appear inside a switch, for, while, or do construction. It causes

execution to jump to the first line immediately after the structure containing the break.

A continue statement can appear inside for, while, or do loops. It causes execution to skip over

the remaining code in the code block and to jump directly to the loop test.

It is always possible to restructure code that involves the break and continue statements into

equivalent code without those statements. We will therefore not need either statement in this text.

Java by Definition Chapter 1: Foundations Page 42 of 60

Bert G. Wachsmuth DRAFT April 2009

Software Engineering Tip: Avoid using break and continue. They introduce unnecessary

jumps in the flow of your code and make it difficult to understand. Instead of using break or

continue, restructure your code by using conditional execution, boolean variables, or methods

utilizing a return statement.36

1.4. Strings

We have introduced the basic data types available in Java and can create programs that perform

numeric computations and handle single characters. Programs often need to process text as well, but

none of our current data types is suitable for text. To accommodate textual information, Java

provides two types called String and StringBuffer. They are not primitive data types but strings

are so useful that we introduce them as early as possible. You may want to revisit this section after

learning about classes in chapter 3.

What is a String

First we need to define what a String is. Our first attempt is to say:

A String is a list of characters

But a list has a specific length whereas we want to consider, for example, "Java" and "Java by

Definition" to be valid strings even though they have different lengths. We could say:

A String is a list of characters that can vary in length as needed

This is certainly a better definition but it does not cover a String's complexity. A String is not only a

list of characters whose length is the same as the number of characters it stores, but every variable

of type String includes a variety of useful operations that can be used to manipulate itself. In

chapter 3 we will see that this is a common phenomenon: a String is our first example of a class and

classes always include operations to manipulate their own data.

String

A String is an immutable list of characters whose length is the same as the number of characters

it stores such that every variable of type String contains a variety of useful operations. There are

two ways to initialize a String:

 String s1 = "list of characters"

 String s2 = new String("list of characters");

Variables of type String can be concatenated, or appended to each other, using the

concatenation operator +.
37

 The operations that can be performed on Strings are described in

table 34.

36

 See chapter 2 for the definition of a method and the return keyword.
37

 The concatenation operator + looks like the plus symbol +. The context decides how it is interpreted: if used with

numeric types it represents addition, if used with String types it represents concatenation.

Java by Definition Chapter 1: Foundations Page 43 of 60

Bert G. Wachsmuth DRAFT April 2009

The characters in a String are indexed starting at 0, which implies that the last character in a

String of length N has the index N-1. A variable of type String that is declared but not

initialized is set to the object literal null.

In other words, a String is different from the previous basic types for two reasons:

 A String can be of any length as needed, resulting in a flexible need for memory (whereas the

basic types have fixed memory requirements).

 A String contains its own operations (whereas the standard numeric operations and comparison

operators are separate operators that apply to the basic types but are not part of them).

Example 1.34: Initializing String variables

Create three variables of type String and initialize two of them to your first and last name,

respectively. Then assign the full name to the third variable. Display all values on the screen in a

complete program.

To initialize the first two strings we use the first variation of the above definition. To initialize the

third, we concatenate the first two variables:

String first = "Bert";

String last = "Wachsmuth";

String name = first + last;

We embed this code segment into a complete program, using System.out.println to display the

values on the screen. Figure 1.32 shows the result of executing the program.

public class SimpleStrings

{ public static void main(String args[])

 { String first = "Bert";

 String last = "Wachsmuth";

 String name = first + last;

 System.out.println(first);

 System.out.println(last);

 System.out.println(name);

 }

}

Figure 1.32: Executing SimpleStrings

The variable name does not contain a space between first and last name so should concatenate the

two strings first and last with a space in the middle:

String name = first + " " + last;

This example seems to imply that strings can be handled like the other basic types. But that is not

true as the following example shows.

Example 1.35: Invalid String comparison with double-equal

Concatenate two strings to form a full name, based on the first and last name, and store it in a String.

Then create another String that is initialized to the same full name in one line. Compare the two

strings for equality and display the result of that comparison.

Java by Definition Chapter 1: Foundations Page 44 of 60

Bert G. Wachsmuth DRAFT April 2009

This might seem like a strange request. Both strings are supposed to contain the same characters in

the same order, so comparing them for equality should result in true. But if we complete the

example, the answer is surprising, as shown in figure 1.33.

public class StrangeStrings

{ public static void main(String args[])

 { String name1 = "Bert Wachsmuth";

 String first = "Bert";

 String last = "Wachsmuth";

 String name2 = first + " " + last;

 System.out.println(name1);

 System.out.println(name2);

 if (name1 == name2)

 System.out.println("names are the same");

 else

 System.out.println("names are different");

 }

}

Figure 1.33: StrangStrings Output

Of course the characters in the strings are not different, but the double-equal operator "==" does not

check strings for equality. Instead it checks whether two strings are located at the same memory

location, which is usually of no interest to us.

Software Engineering Tip: Strings are not basic types and can not be compared using the

comparison operators ==, <, >, <=, >=, or !=. To compare strings use the built-in String

operations equals or compareTo described in table 34. Unfortunately the compiler does not

complain if you do use the double-equal operator == to compare strings so this mistake is hard to

catch.

String Operations

Built-in String Operations

Every variable of type String contains a variety of built-in operations as shown in table 34. To

access them, use the dot operator (described in detail in chapter three) as follows:

 s.operation(inputValues);

where s is a variable of type String, operation is one of the operations described in table 34,

and inputValues is a comma-separated list of variables or values of the type(s) required by the

respective operation, or none if the operation does not require any parameters.

Some of the operations that are allowed for a variable of type String are described as follows:

Operation Description
int length() Returns the length of the string.
char charAt(int index) Returns the character at the specified index.
boolean equals(String s) Returns true if the string represents the same

Java by Definition Chapter 1: Foundations Page 45 of 60

Bert G. Wachsmuth DRAFT April 2009

sequence of characters as s.
boolean equalsIgnoreCase(String s) Same as equals but ignores the case of the strings.
int compareTo(String s) Returns 0 if the string is equal to s, less than 0 if it is

lexicographically less than s, otherwise greater than 0.
boolean startsWith(String prefix) Tests if the string starts with the given prefix.
boolean endsWith(String suffix) Tests if the string ends with the given suffix.
int indexOf(String str) Returns the position where str first occurs in the

string, or –1 if str is not contained in the string.
String substring(int begin, int end) Returns a new string containing the characters from

positions begin to end–1.
String replace(char old, char new) Returns a new string where all characters old are

replaced with new.
String toLowerCase() Returns string converted to lowercase.
String toUpperCase() Returns string converted to uppercase.
String trim() Returns string without white space on both ends.

Table 1.34: Selected operations of the String type

Each operation acts on the string variable that invokes it and returns the data type indicated by the

first word in the definition of the operation but leaves the original string unmodified. Additional

operations and further information about the String class is available in the Java documentation in

the java.lang package.

Example 1.36: String comparison with equal

In example 1.35 we used the double-equal operator to compare two strings with surprising results.

Redo that example using the equals operation.

Instead of using the double-equal operator == as we have done in example 1.35:

if (name1 == name2)

 System.out.println("names are the same");

else

 System.out.println("names are different");

we use the equals operation as follows:

if (name1.equals(name2))

 System.out.println("names are the same");

else

 System.out.println("names are different");

The test name1.equals(name2) returns true if name1 and name2 contain the same characters in the

same order. If you modify the StrangeStrings program from example 1.35 accordingly it reports

that the strings are the same.

The test name2.equals(name1) is equivalent to name1.equals(name2), and if upper and lowercase

did not matter to use we could have used name1.equalsIgnoreCase(name2) or equivalently

name2.equalsIgnoreCase(name1). The tests

(name1.compareTo(name2) == 0) or (name2.compareTo(name1) == 0)

are also equivalent to name1.equals(name2).

Java by Definition Chapter 1: Foundations Page 46 of 60

Bert G. Wachsmuth DRAFT April 2009

Example 1.37: Reversing a String

If s is an unknown string, write a program that will display the string in reverse order of characters, as

well as in all upper case characters.

The operations that will be useful for this example are:

 length() to determine the length of the String

 charAt(i) to extract the i-th character from the String

 toUpperCase() to convert a String to uppercase characters

We use a loop that extracts characters from s in reverse order and appends them to a new String

variable, similar to finding a running total in example 1.28. When the loop is done we convert the

new String to uppercase characters. Remember that the last character in a String s has the index

s.length() – 1.

String newString = "";

for (int i = s.length()-1; i >= 0; i--)

 newString += s.charAt(i);

newString = newString.toUpperCase();

Here is one more example with strings:

Example 1.38: Removing leading blanks

The trim operation of a string removes all trailing and leading blanks, if any, from a string. Write

some code that removes only the leading blanks from an unknown string s.

We can not use a for loop because we do not know how many leading blanks the string s contains.

Therefore we use a while loop to check each character in the string, starting at the beginning. If it is

a space we remove it, otherwise our loop is done. The String operations that will be useful are

charAt(i) to extract the i-th character from the string and substring(start, end) to extract

characters from the string. Our first attempt looks like this:

while (s.charAt(0) == ' ')

 s = s.substring(1, s.length());

If s = " Java by Definition" the code removes all leading blanks from s by setting it eventually

to "Java by Definition". But in the extreme situation of s = " ", a string consisting entirely

of blanks, our code generates a runtime error as shown in figure 1.35.

Figure 1.35: Accessing character at an invalid position in String

The error occurs because all characters were removed from the string s so that we can no longer ask

for the character at the 0th position. The string s = "" does not have a character at that position.

We guard against that possibility by adding an additional test to our while loop as follows:

while ((s.length() > 0) && (s.charAt(0) == ' '))

Java by Definition Chapter 1: Foundations Page 47 of 60

Bert G. Wachsmuth DRAFT April 2009

 s = s.substring(1, s.length());

Note that if the first condition evaluates to false Java does not need to check the second one before

evaluating the entire expression to false. No runtime error will result in this improved code.

StringBuffer and Its Operations

We did not elaborate on the word "immutable" in the definition of a String. It means that a String,

once initialized, can not change. The operations of a String variable provide information about the

string or return a new string as a modified version of the original, but they leave the string itself

unchanged. If we need to modify the characters contained in a String, another type must be used.

StringBuffer

A StringBuffer is a mutable list of characters whose length and composition is variable. A

variable of type StringBuffer is initialized using the syntax:

 StringBuffer sb = new StringBuffer("list of characters");

Variables of type StringBuffer can use the dot operator to access the operations listed in table

1.36, similar to variables of type String.
38

None of the standard numerical operators are valid for variables of StringBuffer type including the

concatenation operator + that works fine for String types. In fact, any operation using the

concatenation operator + for strings is internally converted to an operation using StringBuffers and

their append and toString operations. For example, the third line of the code segment

String first = "Bert";

String last = "Wachsmuth";

String name = first + " " + last;

is internally and automatically converted39 to operations similar to the following:

StringBuffer tempBuffer = new StringBuffer(first);

tempBuffer.append(last);

String name = tempBuffer.toString();

Operation Description
append(type t) Appends t, where t can be any type.
insert(int pos, type t) Inserts t at position pos, where t can be any type.
delete(int start, int end) Deletes characters from position start to end-1.
deleteCharAt(int pos) Removes character at position pos.
setCharAt(int index, char ch) Sets character at position pos to ch.
replace(int start, int end, String str) Replaces characters from start to end by str.

38

 Additional operations and further information is available in the Java documentation about the

java.lang.StringBuffer class.
39

 The concatenation operator does not change a String. For example, in String s = "Pizza"; s += s a new

StringBuffer is initialized, "Pizza" is appended twice, and a new String with value "PizzaPizza" is returned.

The old String with value "Pizza" is no longer used.

Java by Definition Chapter 1: Foundations Page 48 of 60

Bert G. Wachsmuth DRAFT April 2009

int length() Returns the number of characters currently stored.
String toString() Returns the StringBuffer as String.

Table 1.36: Selected operations of the Stringbuffer type

Example 1.39: Removing leading blanks using StringBuffer

In example 1.38 we wrote a code segment to remove leading blanks from a string. Was that code

appropriate? Rewrite it if necessary.

Recall the code segment from example 1.38:

while ((s.length() > 0) && (s.charAt(0) == ' '))

 s = s.substring(1, s.length());

That code is inappropriate. Every time a leading blank needs to be removed a new string is created

by extracting characters from s and reassigning them to s.

" Java"s

Original string

" Java"

s " Java"

Removing 1st blank

" Java"

s

" Java"

"Java"

Removing 2nd blank

Previous versions of s are unused, wasting computer memory and time. Since our intention is to

modify the String s if necessary we should use a StringBuffer instead of a String:

StringBuffer sb = new StringBuffer(s);

while ((sb.length() > 0) && (sb.charAt(0) == ' '))

 sb.removeCharAt(0);

s = sb.toString();

Original string Removing 1st blank Removing 2nd blank

" Java"sb " Java"sb "Java"sb

This code is more efficient and has the same functionality so it is preferred over the original code.

Software Engineering Tip: A String contains characters that can not change while a

StringBuffer is flexible.

 If you need to add or remove characters from a string, use a StringBuffer, not a String.

 If you need text that remains more or less constant, use a String.

As a rule of thumb, if a String variable is on the left side of an assignment (other than

initialization), a StringBuffer would be the better data type.

The difference in efficiency of using StringBuffer over String becomes apparent only if a large

string or a large number of strings are manipulated. In this text we are rarely confronted with that

situation so we will use, for convenience, the concatenation operator to add strings even though a

StringBuffer with its append operation would be more appropriate.

1.5. Output and Constants

Java by Definition Chapter 1: Foundations Page 49 of 60

Bert G. Wachsmuth DRAFT April 2009

At this point we know how to store and manipulate data and how to control the basic flow of a

program. This section describes how to produce formatted output on the screen and how to create

and use named constants. It includes a recipe for formatting decimal numbers so that we can create

programs that produce reasonably nice looking output.

Simple Screen Output

We have already seen how to produce output that appears on the screen using System.out.println.

Here is a description of that mechanism in some more detail.40

Output using System.out and System.err

Java can display the values of variables and constants on the system console (usually the display

from where the program started) using the keywords System.out, the dot operator, and either

 println(expression) to display the values of the expression and an additional newline

character, leaving the cursor at the beginning of the next line, or

 print(expression) to display the values of the expression, leaving the cursor immediately

after the last displayed character
41

where expression can contain constants, literals, and variables or all types, combined with the

concatenation operator +. The control sequences \t and \n provide limited formatting options.

Java also offers the commands System.err.print and System.err.println to produce output

on a device to display error messages, which is usually the system console as well.

Example 1.40: Output with simple formatting

Create a complete program with one variable from each of the basic types. Initialize them and display

their values together with appropriate text. Also, display the values of e (Euler's number), , 2 , and

)cos(e .

To create this program we follow our basic framework:

public class SystemOutput

{ public static void main(String args[])

 { short aShort = 1;

 int anInt = 123;

 long aLong = 123456L;

 float aFloat = 123F;

 double pi = Math.PI, e = Math.E;

 char cc = 'B';

 boolean okay = false;

 System.out.println("Decimal numbers:");

 System.out.println("\t double value: " + pi + " (pi)");

 System.out.println("\t double value: " + e + " (Euler's number)");

 System.out.println("\t float value: " + aFloat);

 System.out.println("\t large double value: " + Math.exp(120.0));

 System.out.println("Integer numbers:");

40

 A complete discussion of the System.out and System.err streams can be found in section 8.6.
41

 Output may not appear until you produce a newline character. To force output to appear in that case, use the

command System.out.flush() after System.out.print(expressionList).

Java by Definition Chapter 1: Foundations Page 50 of 60

Bert G. Wachsmuth DRAFT April 2009

 System.out.print("\t int is " + anInt);

 System.out.print(", short is " + aShort);

 System.out.println(", and a long is " + aLong);

 System.out.println("Other types:");

 System.out.println("\t character = " + cc + ", boolean = " + okay);

 System.out.println("Computations:");

 System.out.println("\t square root of 2 = " + Math.sqrt(2.0));

 System.out.println("\t cos(e + Pi) = " + Math.cos(e + pi));

 System.out.flush();

 }

}

The program must be saved as SystemOutput.java, compiled via javac SystemOutput.java, and

executed using java SystemOutput.

Figure 1.37: Execution results for SystemOutput.java

The output shown in figure 1.37 shows in particular:

 Double values can have up to 15 digits after the period (see "Formatting Decimals" below).

 Large double values are displayed in scientific form.42

 The control sequence \t can be used to indent the output.

 System.out.print leaves the cursor immediately after the last character displayed.

 Spacing and other characters between expressions can be appended as String literals.

 System.out.println(...) can display the results of computations directly.

The ability to connect multiple expressions via the concatenation symbol is very convenient to

quickly produce reasonably looking output, but it is not always correctly interpreted.

Example 1.41: Different interpretation of plus symbol

What is displayed when the following statements are executed:

int i = 10;

System.out.println("Adding one to i: " + i+1);

The System.out.println statement contains two + symbols with different interpretations:

 The first + is meant to concatenate the String and the result of the computation i+1.

 The second + is meant to add 1 to the value of i.

42

 A double is displayed with up to 15 digits after the period if 10
-3

 < |double| < 10
7
, otherwise in scientific notation.

Java by Definition Chapter 1: Foundations Page 51 of 60

Bert G. Wachsmuth DRAFT April 2009

But only the first interpretation of + is used and Java displays

Adding one to i: 101

instead of "Adding one to i: 11" because it appends the test, the current value of i, and the literal

1 and does not add 1 to i. To produce the intended output we need to use parenthesis to clarify the

interpretation of the + symbols:

System.out.println("Value of i+1 is: " + (i+1));

Formatting Decimal Numbers

There are many occasions when you not only want to display the value of a number but also control

its format. For example, you may want all decimals to have six digits after the period, or variables

representing currency values should show two digits after the decimal point.43

Formatting Decimals

To display formatted decimal numbers without changing their value use the following steps:

1. Before defining your class or program insert as the very first line of the source code:

 import java.text.DecimalFormat;

2. In your code create a "number formatting tool" using the syntax:

 DecimalFormat formatToolName = new DecimalFormat("pattern");

3. Display a formatted version of a float or double variable number using the syntax:

 System.out.println("Formatted: " + formatToolName.format(number));

The value of pattern is a combination of the symbols "#", "0", "," and ".", where "," denotes

a number group separator, "." denotes a decimal separator, "#" represents a digit except

trailing zeros after a decimal separator, and "0" represents a digit.

Table 1.38 shows some examples of formatting patterns and their meaning:

Pattern Meaning of Pattern
"#.#" digits before decimal point as needed, no group separator between them, and

at most one digit after the decimal point
"#,###.##" numbers before the decimal point as needed with groups of three digits

separated by a comma and at most two digits after the decimal point
"#,###.00" numbers before the decimal point as needed with groups of three digits

separated by a comma and exactly two digits after the decimal point

Table 1.38: Examples of decimal number formatting patterns
44

Example 1.42: Formatting decimal numbers

Create a program that contains three double numbers bigger than 1,000, two with 3 decimal numbers

after the period and one without digits after the period. Display each number on the screen, first

without formatting, then formatted as US Dollar values.

43

 The formatting mechanism explained here contains language constructs introduced in chapter 3 but since numeric

formatting is simple and useful we introduce it here in a "cook-book" style.
44

 For additional formatting options check the Java API for the java.text.DecimalFormat class

Java by Definition Chapter 1: Foundations Page 52 of 60

Bert G. Wachsmuth DRAFT April 2009

Currency values in US Dollar need "," after each group of three digits before the decimal point and

2 digits after the decimal point. Based on table 38 we might try to use the pattern "#.##", but it

would not insert grouping symbols after each group of three digits and it would display a maximum

of 2 digits after the period, not exactly 2 digits. Instead the pattern "#,###.00" will achieve our goal,

as shown in figure 1.39.45 We name our formatting tool inUSDollars to signify its formatting

pattern.

import java.text.DecimalFormat;

public class FormatTest

{ public static void main(String args[])

 { DecimalFormat inUSDollars = new DecimalFormat("#,###.00");

 double x = 1234.567;

 double y = 7654.321;

 double z = -8989898;

 System.out.println("Not formatted x: " + x);

 System.out.println("Not formatted y: " + y);

 System.out.println("Not formatted z: " + z);

 System.out.println("Formatted x: " + inUSDollars.format(x));

 System.out.println("Formatted y: " + inUSDollars.format(y));

 System.out.println("Formatted z: " + inUSDollars.format(z));

 }

}

Figure 1.39: Output of FormatTest program

The numbers are formatted as specified and are properly rounded.46

Software Engineering Tip: One formatting tool can be used to format any number of double

variables. It should be declared at the beginning of your program to make it easy to locate and

change the formatting pattern.

If multiple formatting patterns are needed, define one formatting tool for each formatting option

and declare all of them at the beginning of your program. Choose suitable names for the

formatting tools that signify the formatting they apply (e.g. inPercent or withTwoDigits).

Named Constants

To conclude our discussion about the fundamentals of Java programming we explain how to define

named constants, which are commonly used to create flexible programs and to provide mnemonic

devices. For example, instead of the value 3.141592653589793 the constant Math.PI is easier to

45

 A more appropriate pattern is"$#,###.00" to automatically precede the numeric value by the dollar symbol $.
46

 You can display the unformatted version of the numbers again to verify that the actual values remain unchanged.

Java by Definition Chapter 1: Foundations Page 53 of 60

Bert G. Wachsmuth DRAFT April 2009

remember, and instead of creating a for loop from 0 to 10 it is more convenient to define a constant

such as MAX_LOOP that equals 10 so that the loop goes from 0 to MAX_LOOP.

Named Constants via final

To prohibit any modification of a variable its type can be prefaced by the keyword final. Such a

variable is called named constant and must be initialized when it is declared. Its value can not

change after it has been initialized. Final variable names usually consist of uppercase

characters and are declared at the beginning of a program.

We have already seen the named constants Math.PI and Math.E for the values of and e. This

definition explains how to define our own constants.

Example 1.43: A Tip Table program

Write a program that creates a "tip table" to find the correct tip for the amount of a check at a

restaurant.

Tips are usually about 15% of the amount of the check. Our tip table should contain possible

amounts for restaurant checks together with the corresponding tip. People often have their own

preferred tip rate and visit restaurants with different price ranges, so we make our program flexible

by defining the tip rate and the smallest and largest amount for the check as constants. To ensure

that our table will look nice we use decimal formatting and output options as explained previously.

import java.text.DecimalFormat;

public class TipTable

{ public static void main(String args[])

 { final double TIP_RATE = 17;

 final double MINIMUM_BILL = 31.0;

 final double MAXIMUM_BILL = 51.0;

 final double STEP = 1.0;

 DecimalFormat inUSDollars = new DecimalFormat("#,###.00");

 DecimalFormat inPercent = new DecimalFormat("#,###");

 for (double check = MINIMUM_BILL; check <= MAXIMUM_BILL; check += STEP)

 { double tip = check * TIP_RATE / 100;

 System.out.print(inPercent.format(TIP_RATE));

 System.out.print("% of $" + inUSDollars.format(check));

 System.out.print(" = $" + inUSDollars.format(tip));

 if ((check % 3) == 0)

 System.out.println("");

 else

 System.out.print(",\t");

 }

 }

}

Figure 1.40 shows the output for this program. Because we used named constants it can easily be

adjusted by modifying the values at the top of our program without changing the code that does the

actual computations.

Java by Definition Chapter 1: Foundations Page 54 of 60

Bert G. Wachsmuth DRAFT April 2009

Figure 1.40: Tip rates at 17% for restaurant checks from $31 to $51

Software Engineering Tip: Defining constants via the keyword final is common practice. A

good Java program should never refer to an unnamed constant for anything significant. Always

use constants to give a name to relevant values and choose the names for your constants so that

they clearly signify their meaning.

Case Study: Java Primes and the Prime Number Theorem

In this optional section we create a program to find prime numbers and to verify a mathematical

theorem called the Prime Number Theorem. The program pulls together everything we have learned

so far into one project.

Example 1.44: The largest Java prime and the Prime Number Theorem

How many prime numbers are there, and what is the largest prime number?

Before we attempt to write a program we need to understand the problem. One fact is clear:

Definition of Prime Number: A positive integer is called prime if the only numbers that

divide it without remainder are 1 and itself.

For example, the numbers 1, 2, 3, 5, 7, 11, and 13 are prime but 9 and 15 are not. To find more

information about primes, we search the World-Wide-Web using a search engine such as

www.yahoo.com for the topic "prime number".

Java by Definition Chapter 1: Foundations Page 55 of 60

Bert G. Wachsmuth DRAFT April 2009

Figure 1.41: Searching the web for "prime number"

We find many references (see figure 1.41), among them the site www.utm.edu/research/primes/.

That site has a great collection of facts about prime numbers and their mathematical theory and

answers our question right away:

Euclid's Theorem: There is no largest prime number, which implies that there are infinitely

many prime numbers.47

This answer is somewhat unsatisfying so we decide to rephrase the questions slightly:

1. We know that there is no largest prime number, but what is the largest prime we can

compute using a Java program?

2. We know that there are infinitely many prime numbers, but how many prime numbers

are less than N, where N is any integer?

Question 1: To find the largest prime we can compute we need an algorithm to decide whether a

given number is prime (compare example 1.32).

 Define a number candidate

 Divide candidate by all numbers less

than candidate and check the

remainder

 If a remainder equals zero,

candidate can be divided without

remainder and is not prime.

 If the remainders are never zero,

candidate cannot be factored and

must be prime.

set divider to 2

no divider yet and
divider < candidate

increment divider

found divider candidate not prime

candidate is prime

candidate = #

end

true

false

false

true

To determine the remainder we can use the % operator, but we must make sure that all numbers

computed are exact and not approximations. Therefore we can not use double types, even though

they have the largest range (compare the Software Engineering Tip after "Bits and Bytes" in section

1.2). We must restrict our search for the largest Java prime to integers, which implies:

The largest prime we can compute must be smaller than the largest long value possible, i.e. it

must be smaller than 9,223,372,036,854,775,807.48

We have an algorithm and we know that all numbers involved must be of type long so we can write

Java code to tell us whether a given number primeCandidate is prime.

long divider = 2;

boolean foundDivider = (primeCandidate % divider) == 0;

while ((!foundDivider) && (divider < primeCandidate))

{ foundDivider = (primeCandidate % divider) == 0;

 divider++;

47

 See www.shu.edu/projects/reals/logic/proofs/euclidth.html for a proof of Euclid's theorem.
48

 Java includes facilities to handle numbers of arbitrary size so that the restriction of looking for primes smaller than

the largest long is imposed by our limited knowledge of Java programming, not by what is really possible in Java.

Java by Definition Chapter 1: Foundations Page 56 of 60

Bert G. Wachsmuth DRAFT April 2009

}

if (foundDivider)

 System.out.println(primeCandidate + " is not prime");

else

 System.out.println(primeCandidate + " is prime");

But if a number n divides primeCandiate, then n * m = primeCandidate for some integer m and at

least one of the numbers n or m must be less than or equal to ateprimeCandi . Therefore we only need

to check for dividers that are no larger than ateprimeCandi , so we can improve the above while loop:

... as before

while ((!foundDivider) && (divider <= Math.sqrt(toCheck)))

{ foundDivider = (toCheck % divider) == 0;

 divider++;

}

... as before

We are checking divisibility by 2, 3, 4, ... but if a number is not divisible by 2 it can not be divisible

by any even number. Therefore it suffices to check divisibility by 2 and then only by odd numbers:

long divider = 2;

boolean foundDivider = (primeCandidate % divider) == 0;

divider = 3;

while ((!foundDivider) && (divider <= Math.sqrt(primeCandidate)))

{ foundDivider = (primeCandidate % divider) == 0;

 divider += 2;

}

... as before

Now we create a complete program to find the largest prime number that is less than or equal to the

largest possible long. It starts by setting primeCandidate to the largest long possible, checks it for

being prime, then decrements primeCandidate by one and checks again until a prime is found.

public class LargestPrime

{ public static void main(String args[])

 { long primeCandidate = 9223372036854775807L;
49

 boolean foundPrime = false;

 while (!foundPrime)

 { long divider = 2;

 boolean foundDivider = (primeCandidate % divider) == 0;

 divider = 3;

 while ((!foundDivider) && (divider <= Math.sqrt(primeCandidate)))

 { foundDivider = (primeCandidate % divider) == 0;

 divider += 2;

 }

 if (foundDivider)

 System.out.println(primeCandidate + " is not prime");

 else

 System.out.println(primeCandidate + " is prime");

 foundPrime = !foundDivider;

 primeCandidate--;

 }

 }

}

Figure 1.42 shows the output of our program, which takes quite some time to complete.50 It finds:

49

 Note the L at the end of the digits, which indicates that this is a long literal (compare "Literals" in section 1.2).

Java by Definition Chapter 1: Foundations Page 57 of 60

Bert G. Wachsmuth DRAFT April 2009

The largest prime of type long is 9,223,372,036,854,775,78351

Figure 1.42: Finding the largest prime inside the range for the long type

Question 2: Now we solve the second question of counting the number of primes less than N for any

given integer N. Reading through the information provided at www.utm.edu/research/primes/ we

find a theorem called the Prime Number Theorem that answers the question:

Prime Number Theorem: There are approximately
1)log(N

N
primes not exceeding N.

We want to create a program to verify this theorem. If PNT(N) stands for the number hypothesized by

the Prime Number Theorem and Pi(N) denotes the actual number of primes less than or equal to N

we can use the following algorithm:

 Set N to 3 and Pi(N) to 3 (because there

are 3 primes less than or equal to 3).

 Check if N is prime.

 If so, increment Pi(N) by one and

display N, Pi(N), PNT(N), and the

difference |Pi(N) – PNT(N)| in percent.

 Increment N and repeat the process.

 Stop when N reaches the largest

possible prime we can handle.

N = 3
Pi(N) = 3

N < large value

end

is N prime ?
increment Pi(N)

display N, Pi(N), PNT(N)

increment N

true

false

true

false

To make our program flexible we define constants for the starting values of N and Pi(N). To format

the error between Pi(N) and PNT(N) we use the decimal formatting tool described in section 1.5. We

use the variable names candidate instead of N, counter instead of Pi(N), and pnt instead of PNT(N)

to make our program more readable.

import java.text.DecimalFormat;

public class VerifyPrimeNumberTheorem

{ public static void main(String args[])

 { final long START_AT = 3;

 final long STOP_AT = 9223372036854775783L;

 final long START_COUNT = 2;

50

 It is easy to decide whether small numbers are prime, but finding large primes gets increasingly so complicated

that encryption algorithms for commercial and military data encryption are based on that fact.
51

 François Edouard Anatole Lucas (1842 – 1891) showed in 1876 that 2
127

-1 (which is a 39 digit number) is prime,

which remains the largest prime number discovered without the aid of a computer.

Java by Definition Chapter 1: Foundations Page 58 of 60

Bert G. Wachsmuth DRAFT April 2009

 DecimalFormat inPercent = new DecimalFormat("#,##0.00");

 long counter = START_COUNT;

 for (long candidate = START_AT; candidate <= STOP_AT; candidate++)

 { long divider = 2;

 boolean foundDivider = (candidate % divider) == 0;

 divider = 3;

 while ((!foundDivider) && (divider <= Math.sqrt(candidate)))

 { foundDivider = (candidate % divider) == 0;

 divider+=2;

 }

 if (!foundDivider)

 { counter++;

 double pnt = candidate/(Math.log(candidate)-1);

 double error = Math.abs(counter - pnt) / counter * 100;

 System.out.print("Prime: " + candidate);

 System.out.print("\tCount: " + counter);

 System.out.print("\tTheorem: " + (int)Math.round(pnt));

 System.out.println("\tError: " + inPercent.format(error) + "%");

 }

 }

 }

}

This program will take forever to finish, but we can stop it at any time,52 adjust the constants

according to the latest output of the program, and recompile and restart the program at a later time.

Using that technique several runs of the program are shown in figure 1.43.

Figure 1.43: Verifying prime number theorem

We can see, for example, that there are 10 prime numbers less than or equal to 23 (1, 2, 3, 5, 7, 11,

13, 17, 19, and 23), while the Prime Number Theorem states that there are approximately 11

(rounded to the nearest integer). After the program executes for quite some time, it states that

958,321 prime numbers are less than or equal to 14,794,517, while the Prime Number Theorem

hypothesizes a count of 953,884, amounting to an error of 0.46%. Our program indicates that the

Prime Number Theorem indeed predicts the number of primes not exceeding a given integer

accurately, especially for large numbers.

If you are interested in prime numbers, check the site www.mersenne.org. It describes the "Great

Internet Mersenne Prime Search" (GIMPS), which ties together thousands of small personal

computers over the Internet to find huge prime numbers. GIMPS looks for Mersenne Primes, which

52

 To interrupt a Java program at any time, press <Ctrl><C>.

Java by Definition Chapter 1: Foundations Page 59 of 60

Bert G. Wachsmuth DRAFT April 2009

are prime numbers that can be expressed by the formula 2P-1 for some integer p.53 Throughout

history, the largest known prime number has usually been a Mersenne prime. Over 8,000 people

have contributed computer time to help discover world-record Mersenne primes. GIMPS has

discovered four Mersenne primes since 1996, and on June 1st 1999, Nayan Hajratwala found the

current world record prime, 26972593-1.54 You can join the search for the next world record prime by

downloading free software provided at that site.

Chapter Summary

In this chapter we introduced the following concepts and terminology:

Java Programming Guidelines, Source Code

See section 1.1, example 1.01 (The first source code file)

Compiling

See section 1.1, examples 1.02 (Compiling a source code file) and 1.03 (Compiling source code

with errors)

Executing a Class File

See section 1.1, example 1.04 (Executing a class file)

Default Program Entry Point

See section 1.1, example 1.05 (Executing class file without main)

Java Virtual Machine (JVM), Security

Primitive Java Data Types, Literals, Binary Representation

See section 1.2, example 1.06 (Converting integers to binary form)

Bits and Bytes

See section 1.2, example 1.07 (Number of bytes to store boolean, int, and long)

Declaration of Variables, Valid Names for Variables

See section 1.2, example 1.08: (Declaring variables)

Assigning a Value to a Variable

See section 1.2, examples 1.09 (Declaring variables and assigning values) and 10 (Using

appropriate variable names)

Basic Arithmetic for Numeric Types

See section 1.2, example 1.11 (Basic computations)

Advanced Arithmetic for Numeric Types

See section 1.2, example 1.12 (Advanced computations)

Increment and Decrement Operators

See section 1.2, example 1.13: (Prefix and postfix increment and decrement)

Computational Shortcut Notation

See section 1.2, example 1.14 (Shortcut evaluation)

Simple Typecasting or Conversion

See section 1.2, example 1.15 (Typecasting to double) and 1.16 (Typecasting large range to small

range types)

Boolean Operators, Comparison Operators and Tests

See section 1.2, example 1.17 (Simple tests) and 1.18: (Tests with short-circuit boolean

evaluation)

The instanceof Operator

Block of Code, The Simple if Statement

53

 Prime numbers are not necessarily of the form 2
p
-1. For example, the largest long is 2

63
-1, which is not prime, and

the number 9,223,372,036,854,775,807 we found earlier is prime but not a Mersenne prime.
54

 2
6972593

-1 is a prime number with 2,098,960 digits (our largest prime has a meager 19 digits).

Java by Definition Chapter 1: Foundations Page 60 of 60

Bert G. Wachsmuth DRAFT April 2009

See section 1.3, examples 1.19 (Simple if statement) and 1.20 (Invalid simple if statement)

The if-else Statement with Alternative

See section 1.3, examples 1.21 (Simple if-else statement) and 1.22 (Invalid if-else statement)

The Nested if-else-if Statement

See section 1.3, example 1.23 (Converting numeric scores to letter grades)

The switch Statement

See section 1.3, examples 1.24 (Converting letter grades to numeric scores), 1.25 (Replacing if-

else-if code by switch), and 1.26 (Replacing switch by if-else-if code)

Loop, The for Loop

See section 1.3, examples 1.27 (Simple for loop), 1.28 (Finding running total), 1.29 (Finding

running totals with different step sizes), and 1.30 (Over- or underperforming loops)

The while Loop

See section 1.3, examples 1.31 (Replacing for loop with while), 1.32 (Testing for prime numbers),

and 1.33 (Sum of primes)

The do Loop, break and continue
String

See section 1.4, examples 1.34 (Initializing String variables) and 1.35 (Invalid String

comparison with double-equal)

Built-in String Operations

See section 1.4, examples 1.36 (String comparison with equal), 1.37 (Reversing a String), and

1.38 (Removing leading blanks)
StringBuffer

See section 1.4, example 1.39 (Removing leading blanks using StringBuffer)

Output using System.out and System.err

See section 1.5, examples 1.40 (Output with simple formatting) and 1.41 (Different interpretation

of plus symbol)

Formatting Decimals

See section 1.5, example 1.42 (Formatting decimal numbers)

Named Constants via final

See section 1.5, example 1.43 (A Tip Table program)

Case Study: Java Primes and the Prime Number Theorem

